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The present study investigates the combined effects of varying viscosity and heat transfer on a Casson fluid 
through an inclined porous axisymmetric tube in the presence of slip effects. The modeled governing equations 
are solved analytically by considering the long wavelength and small Reynolds number approximations. The 
numerical integration is employed to obtain pressure rise and frictional force. A parametric analysis has been 
presented to study the effects of the Darcy number, angle of inclination, varying viscosity, velocity slip, thermal 
slip, yield stress, amplitude ratio, Prandtl number and Eckert number on the pressure rise, pressure gradient, 
streamlines, frictional force and temperature. The study reveals that an increase in the angle of inclination and 
viscosity parameter has a proportional increase in the pressure rise. Also, an increase in the porosity causes a 
significant reduction in the pressure rise. 
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1. Introduction 

 
The study of flow through a porous medium has acquired a considerable interest of researchers in 

recent time due to its applications in understanding various mechanisms in lungs, gallbladder, blood vessel 
movement, etc. In the human body, a large part of the muscle is a porous structure. These structures are 
essential to supply the nutrients to every cell, and their proper functioning mainly depends upon the blood 
flowing through them. In such situations, the presence of slip on the boundary due to the porosity of the wall 
plays an essential role in inspecting the flow of blood in arteries. Thus, slip effects are more articulated for 
fluids moving through geometries which have flexible property, like blood vessels. The experimental 
investigations on blood flow revealed the significance of slip at the porous walls. Specifically, peristaltic 
movement of blood through a tube can be modeled better by taking slip and porosity into account. The 
preliminary investigation on peristaltic transport was initially carried out by Latham [1]. Subsequently, many 
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researchers have carried out theoretical and experimental studies on peristaltic transport by taking different 
geometries and assumptions (Burns and Parkes [2]; Shapiro et al. [3]; Rajashekhar et al. [4]). Early literature 
on the peristaltic mechanism suggests that the study on the porosity of the wall has not been given much 
importance it deserves. Taking this fact into consideration, the first attempt was made by Elshehawey et al. 
[5]. Later, Elshehawey and Husseny [6] studied peristaltic transport through a porous medium bounded by 
two porous plates. Vajravelu et al. [7] used the Phan-Thein-Tanner fluid to study the peristaltic movement. 
The study on MHD Couette flow of a Jeffery fluid in a porous medium was investigated by Sreenadh et al. 
[8]. Sankad and Nagathan [9] carried out the studies on peristaltic transport of a couple stress fluid under the 
influence of slip and heat transfer in a porous medium. Recently, Ellahi et al. [10], investigated peristaltic 
transport of a nanofluid by considering entropy generation and porous medium. Most of the studies on 
peristaltic transport are carried out by taking Newtonian or non-Newtonian approach. This approach may be 
sufficient to understand the urine flow through the ureter and flow of blood in large arteries where shear rate 
is high, but it fails to explain the complex rheological behavior of blood in narrow arteries where the shear 
rates are low. Studies on a non-Newtonian nature of blood flow have been of most importance to researchers 
in recent years due to their application in investigating the behavior of blood in narrow arteries. Casson fluid 
is one of such non-Newtonian fluids which exhibits yield stress and is adequate for the description of the 
flowing blood when the shear rates are low. Blair [11] observed that at low shear rates, the Casson model 
was more accurate in predicting the physiological behaviors of blood. Thus, numerous researchers studied of 
the Casson model under different physiological fluids (Nagarani [12]; Vajravelu et al. [13]; Prasad et al. 
[14]; Vajravelu et al. [15]). Apart from the Casson model, the Herschel-Bulkley model also includes yield 
stress and studies concerning the use of the model on peristaltic transport were reported in the studies of 
(Chaturani and Narasimhan [16]; Manjunatha et al. [17]; Manjunatha and Rajashekhar [18]). 

The above mentioned studies do not explain the heat transfer effects on peristaltic transport. The 
study of heat transfer effects along with slip conditions on peristalsis has attracted attention of researchers 
due to the extensive application in the field of biofluid mechanics, chemical engineering, and medicine. 
Several researchers examined the interaction between peristalsis and heat transfer in different geometries 
with and without slip conditions. By considering the elastic nature of the tube Radhakrishnamacharya and 
Srinivasulu [19] explored peristaltic transport with the effects of heat transfer. Later, Srinivas and 
Kothandapani [20] investigated the impact of heat transfer for peristaltic transport in an asymmetric channel. 
Nadeem and Akbar [21] analyzed the effects of different rheological parameters on the pressure rise, 
frictional force, and temperature. Vajravelu et al. [22] examined the effects of heat transfer and permeability 
of the tube on peristaltic transport by using a Jeffery model. Subsequently, numerous researchers 
investigated the effect of heat transfer on peristaltic transport in different geometries (Vajravelu et al. [23]; 
Ramesh and Devakar [24]; Hayat et al. [25]; Ebaid et al. [26]; Vaidya et al. [27]; Devaki et al. [28]).  

Most of the investigations on peristaltic transport have been done by taking the viscosity of the fluid 
to be. This supposition fails to give a better understanding of the peristaltic mechanism involved in lymphatic 
vessel, intestine, blood flow in small arteries, etc. In these organs viscosity of the fluid varies across the 
thickness of the fluid (Hayat and Ali [29]; Lachiheb [30]; Awais et al. [31]). Thus, considering variable 
viscosity helps in understanding peristaltic transport of non-Newtonian fluids in the above-mentioned organs.  

To the best of authors' knowledge, no attempts have been made in the literature to investigate the 
combined effects of slip, heat transfer and inclination on peristaltic transport of a Casson fluid in an 
axisymmetric porous tube with variable viscosity. The present investigation is helpful in filling the gap in 
this area. The flow is assumed to be steady, fully developed and laminar. The closed-form solutions are 
obtained for velocity, flow rate, pressure, streamline, pressure rise and frictional force. Further, the impact of 
the amplitude ratio, yield stress, Darcy number, velocity slip parameter, angle of inclination, thermal slip 
parameter, viscosity parameter, Eckert number, Prandtl number on pressure, streamline, pressure rise, 
frictional force and temperature are presented graphically by using MATLAB. 

 
2. Mathematical formulation 

 
Consider peristaltic transport of an incompressible viscous fluid with effects of variable viscosity, 
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slip and heat transfer in an axisymmetric inclined porous tube of radius a  (Fig.1) and inclined at an angle   
to the horizontal. The wall deformation due to the propagation of an infinite sinusoidal wave with constant 
speed c  along the walls of the tube is given by the following equation. 

 

  ( , ) sin ( )
2

h z t 1 z ct
      

                       (2.1) 

 
where   is the amplitude ratio,   is the wavelength, c  is the wave speed, t  is the time and z  is the axial 
direction. 
 

 
 

Fig.1. Geometrical representation of peristaltic waves. 
 

3. Mathematical modelling and solutions to the problem 
 
The equations of motion and energy in the wave frame of reference, moving with speed c, under the 

lubrication approach (Nadeem and Akbar [21]) are as follows 
 

  Re ( ) ( )rz zz
p 1

u w w r
r z z r r r

                   
,                      (3.1)  
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 

 (3.3)                     

 
where u and w are the radial and axial velocities, Re  is the Reynolds number,   is temperature,   is the 
wave number , Pr is the Prandtl number, Ec is the Eckert number, r is the radial coordinate, rr  is the shear 

stress in radial coordinates zr  is the shear stress in axial and radial coordinates, zz  is the shear stress in 

axial coordinate and rz  is the shear stress along radial and axial coordinates.  
 The following nondimensional variables are introduced: 
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 Under the assumption of long wavelength 1   and small Reynolds number (Re )0 , Eqs (3.1)-
(3.3) takes the form 
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, (3.5)  
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 The constitutive equation for Casson's fluid in the non-dimensional form is given by Blair [11] 
 

  ,
( )
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,        (3.8)  
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
.      (3.9) 

 
 The corresponding non-dimensional boundary conditions are  

 

  , at
Da

w w
h 0 r h

r r

  
    

 
,      (3.10) 

 

  , is finite atrz0 r 0
r


  


.      (3.11) 

 
 Equation (3.10) corresponds to the velocity and thermal slip conditions, respectively [32]. Further, 
Da is the porous parameter (Darcy number),   is the velocity slip parameter,   is the thermal slip parameter 

and   is the temperature. 
 The influence of variation in viscosity is chosen in the following form 
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  ,( , ) for1rr z e 0 r h          (3.12) 
or 
  ( , ) , for1 1r z 1 r 1                       (3.13) 
 
where 1  is the viscosity parameter. The choice of 1  here is reasonable physiologically because a typical 
individual or creature of comparable size takes 1-2 L of fluid every day. Additionally, 6-7 L is produced by 
the digestive tract as discharges from salivary organs, stomach, pancreas, liver, and the small digestive 
system itself. This incorporates the reliance of fluid concentration upon the radial axis, which influences the 
viscosity to diminish nearer to the vessel membrane. 
 Solving Eqs (3.5) and (3.6) with the conditions (3.10), (3.11) and (3.13), we obtain 
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0
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 . Also, by using the condition rz h    at r h  (Bird et al. [33]), we obtain 
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 Using relation (3.16) and taking pr r  in Eq.(3.14), we obtain the plug flow velocity as  
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 Using Eq.(3.7) together with the boundary conditions (3.10) and (3.11), we obtain an expression for 
the temperature profile as  
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 Integrating Eqs (3.14) and (3.17) and using the conditions atp 0 r 0    and atp pr r    , the 

stream function for pr r h   is given by  
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      (3.19) 

 
and the stream function for the plug flow in the region p0 r r   can be written as 
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 The instantaneous volumetric flow rate in the wave frame is given by 
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 Thus, we have 
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 The dimensionless time-averaged flux Q  across one wavelength is 
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4. Pumping characteristics 
 

The pressure rise ( P ) over one cycle of the wave is given by 
 

  .
1

0

p
P dz

z


 

                                  (4.1)  

 
 The dimensionless frictional force F  at the wall across one wavelength is 

 

  .
1

2

0

p
F h dz

z

                         (4.2) 

 
5. Results and discussion 
 

The present investigation focuses on the effects of various physiological parameters on the pressure 

rise ( )P , pressure gradient 
p

z

 
  

, frictional force ( )F , temperature    and streamlines   . Because of 

the complexity of the expression 
p

z




, the expressions andP F are not integrable analytically. Thus, these 

quantities are numerically integrated with Weddle’s rule using MATLAB for different values of 
physiological parameters and the results are plotted graphically in Figs 2-10. 

Figure 2(i) is plotted to analyze the effects of   on P . It is observed that with an increase in the 
values of  , P  increases in the pumping region ( )P 0   and it decreases in the augmented region 

( )P 0  . Also note that for a particular value of   the pressure rise curve for 1 0   lies below the curve 

for .1 0 1   and the behavior is opposite when   is minimum. The effects of   on P  and Q  are 

presented in Fig.2(ii). It is noticed from the figure that an increase in the value of   increases P  in the 
pumping region. It is also observed that for a particular value of  , P  curve for .1 0 1   lies above the 

curve for 1 0   and the situation reverses in the case of the augmented region. An increase in the values of 

  enhances P  in a porous tube (Fig.3(i)). The effects of   on P  and Q  show that P  increases for an 

increase in the angle  . This observation on   is in good agreement with the results of Nagarani [12]. Also, 

it is observed that the P  curve for .1 0 1   lies above the curve for 1 0   and the opposite trend is 

noticed in the case of the augmented region (Fig.3(ii)). Figure 4 illustrates the effects of Da on P  and Q . It 

is noticed that for an increase in the values of Da, P  decreases in the pumping region. Further, for Da 0 , 
the P  curve for .1 0 1   lies below the curve for 1 0   and the situation reverses for Da . and .0 02 0 04 . 

This is mainly because an increase in the values of Da increases the porosity of the wall and thus Q  
decreases. Thus, from Figs 2-4, one can observe that the pressure curve with variable viscosity always lies 
above the cure with constant viscosity. This observation is in concurrence with the results obtained by Hayat 
and Ali [29].  
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Fig.2. P  versus Q  for varying (i)  and (ii)   with Da . , . ,0 02 0 2    / and . .14 F 0 1     
 

 
 

Fig.3. P  versus Q  for varying (i)   and (ii)   with . , . , Da .0 4 0 5 0 02      and . .1F 0 1  
 

 
 

Fig.4. P  versus Q  for varying Da with . , . , . ,0 4 0 5 0 2       . and / .1F 0 1 4     
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The above discussion regarding the effects of various physiological parameters is qualitative. To 

discuss the effects quantitatively, the intervals for Q  where , , andP 0 P 0 F 0 F 0       are presented 

in Tabs 1-5. We observe that as   increases the length of the interval for P 0   decreases (Tab.1). Also, for 
.0 2   the length of the interval is more when .1 0 1   than 1 0   and for . and .0 4 0 6   the opposite 

behavior is observed when viscosity increases from 0 to 0.1. The effects of an increase in the values of 
and Da  decrease the length of the interval for P 0  and a similar observation is mode when viscosity 

increases from 0 to 0.1 (Tabs 2 and 3). The behavior of   and   is opposite to that of and Da  (Tabs 4 and 

5). However, from Tabs 1-5 it is noticed that the impact of , , Da, and     on frictional force shows the 
opposite trend as that of the pressure rise.  
 

Table 1. Interval for time averaged flow rate Q  across one wavelength for different values of  . 
 

Parameter :   Interval for Q  

when P 0   

Interval for Q  

when P 0   

Interval for Q  

when F 0  

Interval for Q  

when F 0  
0.2 1 0   .0 Q 1 367   .1 367 Q 2   .0 Q 1 788   .1 788 Q 2   

 .1 0 1   .0 Q 1 402   .1 402 Q 2   .0 Q 1 893   .1 893 Q 2   

0.4 1 0   .0 Q 1 268   .1 268 Q 2   .0 Q 1 516   .1 516 Q 2   

 .1 0 1   .0 Q 1 243   .1 243 Q 2   .0 Q 1 450   .1 450 Q 2   

0.6 1 0   .0 Q 1 206   .1 206 Q 2   .0 Q 1 346   .1 346 Q 2   

 .1 0 1   .0 Q 1 167   .1 167 Q 2   .0 Q 1 240   .1 240 Q 2   

The other parameters choosen are Da . , . , , . and . .10 02 0 2 0 5 F 0 1
4


         

 

Table 2. Interval for time averaged flow rate Q  across one wavelength for different values of  . 
 

Parameter :   Interval for Q  

when P 0   

Interval for Q  

when P 0   

Interval for Q  

when F 0  

Interval for Q  

when F 0  
0.3 1 0   .0 Q 1 304   .1 304 Q 2   .0 Q 1 415   .1 415 Q 2   

 .1 0 1   .0 Q 1 221   .1 221 Q 2   .0 Q 1 298   .1 298 Q 2   

0.4 1 0   .0 Q 1 259   .1 259 Q 2   .0 Q 1 419   .1 419 Q 2   

 .1 0 1   .0 Q 1 201   .1 201 Q 2   .0 Q 1 310   .1 310 Q 2   

0.5 1 0   .0 Q 1 234   .1 234 Q 2   .0 Q 1 423   .1 423 Q 2   

 .1 0 1   .0 Q 1 198   .1 198 Q 2   .0 Q 1 327   .1 327 Q 2   

The other parameters choosen are Da . , . , , . and . .10 02 0 2 0 5 F 0 1
4


         
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Table 3. Interval for time averaged flow rate Q  across one wavelength for different values of Da. 
 

Parameter : Da Interval for Q  

when P 0   

Interval for Q  

when P 0   

Interval for Q  

when F 0  

Interval for Q  

when F 0  
0 1 0   .0 Q 1 137   .1 137 Q 2   .0 Q 1 155   .1 155 Q 2   

 .1 0 1   .0 Q 1 137   .1 137 Q 2   .0 Q 1 157   .1 157 Q 2   

0.02 1 0   .0 Q 1 234   .1 234 Q 2   .0 Q 1 423   .1 423 Q 2   

 .1 0 1   .0 Q 1 198   .1 198 Q 2   .0 Q 1 326   .1 326 Q 2   

0.04 1 0   .0 Q 1 275   .1 275 Q 2   .0 Q 1 534   .1 534 Q 2   

 .1 0 1   .0 Q 1 223   .1 223 Q 2   .0 Q 1 396   .1 396 Q 2   

The other parameters choosen are . , . , , . and . .10 5 0 2 0 5 F 0 1
4


          

 

Table 4. Interval for time averaged flow rate Q  across one wavelength for different values of  . 
 

Parameter :   Interval for Q  

when P 0   

Interval for Q  

when P 0   

Interval for Q  

when F 0  

Interval for Q  

when F 0  
0.1 1 0   .0 Q 1 332   .1 332 Q 2   .0 Q 1 690   .1 690 Q 2   

 .1 0 1   .0 Q 1 259   .1 259 Q 2   .0 Q 1 494   .1 494 Q 2   

0.2 1 0   .0 Q 1 234   .1 234 Q 2   .0 Q 1 423   .1 423 Q 2   

 .1 0 1   .0 Q 1 198   .1 198 Q 2   .0 Q 1 326   .1 326 Q 2   

0.3 1 0   .0 Q 1 202   .1 202 Q 2   .0 Q 1 334   .1 334 Q 2   

 .1 0 1   .0 Q 1 178   .1 178 Q 2   .0 Q 1 270   .1 270 Q 2   

The other parameters choosen are Da . , . , , . and . .10 02 0 5 0 5 F 0 1
4


         

 

Table 5. Interval for time averaged flow rate Q  across one wavelength for different values of  . 
 

Parameter :   Interval for Q  

when P 0   

Interval for Q  

when P 0   

Interval for Q  

when F 0  

Interval for Q  

when F 0  
0 1 0   .0 Q 1 126   .1 126 Q 2   .0 Q 1 124   .1 124 Q 2   

 .1 0 1   .0 Q 1 126   .1 126 Q 2   .0 Q 1 124   .1 124 Q 2   

12
  1 0   .0 Q 1 165   .1 165 Q 2   .0 Q 1 223   .1 223 Q 2   

 .1 0 1   .0 Q 1 152   .1 152 Q 2   .0 Q 1 198   .1 198 Q 2   

6
  1 0   .0 Q 1 202   .1 202 Q 2   .0 Q 1 335   .1 335 Q 2   

 .1 0 1   .0 Q 1 177   .1 177 Q 2   .0 Q 1 267   .1 267 Q 2   

4
  

 

1 0   .0 Q 1 234   .1 234 Q 2   .0 Q 1 423   .1 423 Q 2   

.1 0 1   .0 Q 1 198   .1 198 Q 2   .0 Q 1 326   .1 326 Q 2   

The other parameters choosen are . , . , Da . , . and . .10 5 0 2 0 02 0 5 F 0 1         
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Figure 5 depicts the variation of   and   on the pressure gradient. It is noticed from the figure that 
the magnitude of the pressure gradient increases with an increase in the values of   (Fig.5(i)). Also, for 

.0 2   the pressure curve for .1 0 1   lies below the curve for 1 0   and the situation reverses when 

. and .0 4 0 6  . A similar effect is observed for the variation of   on pressure (Fig.5(ii)). The effects of 

Da and   decrease the magnitude of pressure in an inclined axisymmetric porous tube (Fig.6). The influence 

of   on pressure shows the opposite behavior as that of Da and   (Fig.7). From Figs 5-7, it is seen that the 

maximum pressure gradient occurs when .z 0 75  and the minimum pressure gradient exists near the walls 
of the tube. This confirms the fact that the fluid flow passes through a conduit comfortably in the middle.  

 

 
 
Fig.5. Pressure gradient versus z  for varying (i)   and (ii)   with Da=0.02, .0 2  , .1F 0 1  and / 4   . 
 

 
 

Fig.6. Pressure gradient versus z  for varying (i) Da and (ii)   with . , . , . and . .10 4 0 5 0 2 F 0 1        
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Fig.7. Pressure gradient versus z  for varying   with . , . , Da . , . and / .10 4 0 5 0 02 F 0 1 4          
 

The variations of withF Q  with varying , , and     are plotted in Figs 8 and 9. It is noticed that 

an increase in the values of , , and     decreases the value of the frictional force. A similar behaviour is 
observed when the viscosity parameter increases from 0 to 0.1. Also, the minimum frictional force is 

obtained at Q 0  when , , and     are maximum. Further, the effect of Da on F  shows the opposite 

behavior as that of , , and     (See Fig.10).   
 

 
 

Fig.8. F  versus Q  for varying (i)   and (ii)   with Da . , . ,0 02 0 2    . and / .1F 0 1 4     
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Fig.9. F  versus Q  for varying (i)   and (ii)   with . , . , Da . ,0 4 0 5 0 02      and . .1F 0 1  
 

 
 

Fig.10. F  versus Q  for varying Da with . , . , . ,0 4 0 5 0 2       . and / .1F 0 1 4     
 

Figure 11 depicts the behavior of and  on  . It is observed that an increase in the values of 

and   increases   in an inclined porous tube. Figure 12 illustrates the effect of the variation of and Da  

on  . From Fig.12(i) it is noticed that an increase in the values of   significantly increases the temperature 
( ) . Further, the opposite behavior is observed in the case of Da (Fig.12(ii)). The variation of and   plays 

an important role in increasing   (Fig.13). Figure 14 illustrates the impact of Pr and Ec  on  . It is seen that 

an increase in Pr results in a decrease of  (Fig.14(i)). Physiologically, an increase in Pr means a decrease in 
k  which is responsible for the decrease in  . Hence, cooling of the heated tube can be improved by 
choosing a coolant with a large Pr. Further, similar observations are made for an increase in the values of 
Ec  (Fig.14(ii)). However, in all the cases   increases when viscosity increases from 0 to 0.1. Figures 15 
and 16 represent the streamlines for different values of , , Da and   . It is observed that the volume of 

tapered bolus increases with an increase in the values of , and   . Further, the size of tapered bolus 
decreases with an increase in the values of Da. 
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Fig.11.    versus r  for varying (i)  and (ii)   with . , Ec . , Pr . , .0 2 0 5 0 5 0 2      , Da=0.02, .1F 0 1
and / .4    

 

 
 

Fig.12.    versus r  for varying (i)   and (ii) Da with . , Ec . , Pr . , . , . ,0 4 0 5 0 5 0 2 0 5       
. and / .1F 0 1 4     

 

 
 

Fig.13.    versus r  for varying (i)   and (ii)   with Da . , . , Ec . , Pr . , . ,0 02 0 4 0 5 0 5 0 2        

. and . .10 5 F 0 1    
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Fig.14.     versus r  for varying (i) Pr  and (ii) Ec with Da . , . , / , . , . ,0 02 0 4 4 0 2 0 5           

. and . .1F 0 1 0 2    
 

 
Fig.15.  Streamlines for (i) . and .0 2 0 5    , (ii) . and .0 4 0 5    , (iii) . and .0 3 0 2    , (iv) 

. and .0 4 0 2     with Da . , . , . , / and . .1 10 02 0 2 0 1 4 F 0 1          
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Fig.16.  Streamlines for (i) Da and .0 0 2   , (ii) Da . and .0 02 0 2   , (iii) . and Da .0 3 0 02   , (iv) 

. and Da .0 4 0 02    with . , . , . , / and . .1 10 4 0 5 0 1 4 F 0 1           

 
6. Summary and conclusions 

 
The present paper emphasizes the influence of varying viscosity, slip and heat transfer on peristaltic 

transport of the Casson fluid in an inclined porous tube. Also, from the current model, one can deduce the 
results for a Newtonian fluid in the absence of yield stress. The present study provides a satisfactory outcome 
that represents some of the natural phenomena, especially the flow of blood in narrow arteries which can be 
handled and processed in case of dysfunction. The conclusions can be summarized as follows: 
  it is possible to enhance the pressure rise, frictional force, temperature and peristaltic pumping 

performance by taking the variable viscosity into account; 
  the pumping performance increases with an increase in the slip parameter and decreases with an 

increase in porous parameter; 
  the pressure rise increases with increasing values of the yield stress, amplitude ratio and angle of 

inclination; 
  the magnitude of the pressure gradient is an increasing function of the yield stress, amplitude ratio 

and velocity slip parameter, and is a decreasing function of the Darcy number and angle of 
inclination; 

  the frictional force due to changes in the values of the yield stress, amplitude ratio, velocity slip 
parameter and angle of inclination decreases the frictional force and increases with increasing values 
of the Darcy number; 

  the temperature increases with an increasing amount of the yield stress, amplitude ratio, velocity slip 
parameter, thermal slip parameter, the angle of inclination, Eckert number and Prandtl number, and 
decreases with an increasing value of the Darcy number; 

  the volume of tapered bolus increases with an increase in the value of the yield stress, amplitude 
ratio and velocity slip parameter, and decreases as the Darcy number increases.  
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Appendix 
 
 The expressions that appear in Section 3 are listed as follows 
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Nomenclature 
 
 a  tube radius 
 b  amplitude 
 c  wave speed 
 pc   specific heat at constant pressure 

 Da  Darcy number 
 Ec  Eckert number 
 k   thermal conductivity 
 P  pressure gradient 
 Pr  Prandtl number 
 Re  Reynolds number 
 ( , )r z   radial and axial coordinates 

 pr   plug flow radius 

 T  temperature 
 t  time 
 u  velocity in axial direction 
 Q  volumetric flow rate 
 Q   time averaged flow rate 

 w  velocity in radial direction 
 pw   velocity in plug flow region 

    velocity slip parameter 
 1   viscosity parameter 

    angle of inclination 

    thermal slip parameter 

    wave number 
    amplitude ratio 
    dimensionless temperature 
    wavelength 
 ( )r   variable viscosity 

    ratio of yield stress to wall shearing stress 
 rz   shear stress along radial and axial coordinates 

 0   yield stress 

    stream function 

 
References 
 
[1] Latham W. (1966): Fluid motions in the peristaltic pump.  M.S. Thesis, Boston: Massachusetts Institute of 

Technology. 

[2] Burns J.C. and Parkes T. (1967): Peristaltic motion.  Journal of Fluid Mechanics, vol.29, pp.731-743. 

[3] Shapiro A.H., Jaffrin M.Y. and Weinberg S.L. (1969): Peristaltic pumping with long wavelengths at low 
Reynolds number.  Journal of Fluid Mechanics, vol.37, pp.799-825. 

[4] Rajashekhar C., Manjunatha G., Prasad K.V., Divya B.B. and Vaidya H. (2018): Peristaltic transport of two-
layered Herschel Bulkley fluid.  Cogent Engineering, vol.5, pp.1495592. 

[5] Elshehawey E.F., Mekheimer K., Kaldas S. and Afifi N. (1999): Peristaltic transport through a porous medium. 
 J. Biomath., vol.14. 



Simultaneous effects of heat transfer and variable viscosity ... 327 

 

[6] Elshehawey E.F. and Husseny S.Z.A. (2000): Effects of porous boundaries on peristaltic transport through a 
porous medium.  Acta Mechanica, vol.143, pp.165-177. 

[7] Vajravelu K., Sreenadh S., Lakshminarayana P., Sucharitha G. and Rashidi M.M. (2016): Peristaltic flow of 
Phan-Thein-Tanner fluid in an asymmetric channel with porous medium.  Journal of Applied Fluid Mechanics, 
vol.09, pp.1615-1625. 

[8] Sreenadh S., Prasad K.V., Vaidya H., Sudhakar E., Gopi Krishna G. and Krinshnamurty M. (2016): MHD 
Couette flow of a Jeffrey fluid over a deformable porous layer.  Int. J. Appl. Comput. Math., vol.03, pp.2125-
2138. 

[9] Sankad G.C. and Nagathan P.S. (2017): Transport of MHD couple stress fluid through peristaltis in a porous 
medium under the influence of heat transfer and slip effects.  Int. J. of Applied Mechanics and Engineering, 
vol.22, No.2, pp.403-414. 

[10] Ellahi R., Raza M. and Akbar N.S. (2017): Study of peristaltic flow of nanofluid with entropy generation in a 
porous medium.  Journal of Porous Media, vol.20, pp.461-478. 

[11] Blair S.G.W. (1959): An equation for the flow of blood plasma and serum through glass capillaries. – Nature, 
vol.183, pp.613-614. 

[12] Nagarani P. (2010): Peristaltic transport of Casson fluid in an inclined channel.  Korea-Australia Rheology 
Journal, vol.22, pp.105-111. 

[13] Vajravelu K., Sreenadh S., Devaki P. and Prasad K.V. (2016): Peristaltic pumping of a Casson fluid in an elastic 
tube.  Journal of Applied Fluid Mechanics, vol.09, pp.1897-1905. 

[14] Prasad K.V., Vajravelu K., Vaidya H., Shivakumara I.S. and Basha N.Z. (2016): Flow and heat transfer of a 
Casson Nanofluid over a nonlinear stretching sheet.  Journal of Nanofluids, vol.05, pp.743-752. 

[15] Vajravelu K., Prasad K.V., Vaidya H., Basha N.Z. and Chiu-On-Ng. (2017): Mixed convective flow of a Casson 
fluid over a stretching sheet.  International Journal of Applied and Computational Mathematics, vol.03, 
pp.1619-1638. 

[16] Chaturani P. and Narasimhan N. (1988): Theory for flow of Casson and Herschel-Bulkley fluids in coneplate 
viscometers. – Biorheology, vol.25, pp.199-207. 

[17] Manjunatha G., Basavarajappa K.S., Thippeswamy G. and Vaidya H. (2013): Peristaltic transport of three 
layered viscous incompressible fluid.  Global Journal of Pure and Applied Mathematics, vol.09, pp.93-107. 

[18] Manjunatha G. and Rajashekhar C. (2018): Slip effects on peristaltic transport of Casson fluid in an inclined elastic 
tube with orous walls.  Journa of Advanced Research in Fluid Mechanics and Thermal Sciences, vol.43, pp.67-80. 

[19] Radhakrishnamacharya G. and Srinivasulu C. (2007): Influence of wall properties on peristaltic transport with 
heat transfer.  Comptes Rendus Mecanique, vol.335, pp.369-373. 

[20] Srinivas S. and Kothandapani M. (2008): Peristaltic transport in an asymmetric channel with heat transfer a 
note.  International Communications in Heat and Mass Transfer, vol.35, pp.514-522. 

[21] Nadeem S. and Akbar, N.S. (2009): Influence of heat transfer on a peristaltic transport of Herschel-Bulkley fluid 
in a non-uniform inclined tube.  Communication in Nonlinear Science and Numerical Simulation, vol.14, 
pp.4100-4113. 

[22] Vajravelu K., Sreenadh S. and Lakshminarayana P. (2011): The influence of heat transfer on peristaltic transport 
of a Jeffery fluid in a vertical porous stratum.  Communications in Nonlinear Science and Numerical 
Simulation, vol.16, pp.3107-3125. 

[23] Vajravelu K., Sreenadh S., Dhananjaya S. and Lakshminarayana P. (2016): Peristaltic flow and heat transfer of a 
conducting Phan-Thien-Tanner fluid in an asymmetric channel – Application to chime movement in small 
intestine.  Int. J. of Applied Mechanics and Engineering, vol.21, pp.713-736. 

[24] Ramesh K. and Devakar, M. (2017): Influence of heat transfer on the peristaltic transport of Walters’B fluid in 
an inclined annulus.  Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.39, 
pp.2571-2584. 



328         G.Manjunatha, C.Rajashekhar, H.Vaidya and K.V.Prasad 

 

[25] Hayat T., Zahir H., Alsaedi A. and Ahmad, B. (2017): Heat transfer analysis on peristaltic transport of Ree-
Eyring fluid in a rotating frame.  Chinese Journal of Physics, vol.55, pp.1894-1907. 

[26] Ebaid A., Emad H. A. and Vajravelu K. (2017): Analytical solution for peristaltic transport of viscous nanofluid 
in an asymmetric channel with full slip and convective conditions.  Communications in Theoretical Physics, 
vol.68, pp.96-102. 

[27] Vaidya H., Manjunatha G., Rajashekhar C. and Prasad K.V. (2018): Role of slip and heat transfer on peristaltic 
transport of Herschel-Bulkley fluid through an elastic tube. – Multidiscipline Modelling in Materials and 
Structures, vol.14, pp.940-959. 

[28] Devaki P., Sreenadh S., Vajravelu K., Prasad K.V. and Vaidya H. (2018): Wall properties and slip consequences 
on peristaltic transport of a Casson liquid in a flexible channel with heat transfer. – Applied Mathematics and 
Nonlinear Sciences, vol.3, pp.277-290.  

[29] Hayat T. and Ali N. (2008): Effect of variable viscosity on the peristaltic transport of a Newtonian fluid in an 
asymmetric channel.  Applied Mathematical Modelling, vol.32, pp.761-774.) 

[30] Lachiheb M. (2016): On the effect of variable viscosity on the peristaltic transport of a Newtonian fluid in an 
asymmetric channel.  Canadian Journal of Physics, vol.94, pp.320-327. 

[31] Awais M., Bukhari U. Ali A. and Yasmin H. (2017): Convective and peristaltic viscous fluid flow with variable 
viscosity.  Journal of Engineering Thermophysics, vol.26, pp.69-78. 

[32] Saffman P.G. (1971). On the boundary conditions at the surface of a porous medium.  Studies in Applied 
Mathematics, vol.01, pp.93-101. 

[33] Bird R.B., Stewart W.E. and Lightfoot E.N. (1976): Transport Phenomena. – New York: Wiley. 

 

 

Received: February 11, 2018 

Revised:   October 10, 2018 

 
 


