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One of the most common incipient losses of integrity in mechanical structures is the development and 

propagation of cracks. Especially in rotating members like steam turbine rotors etc. cracks, because of their 
potential, cause catastrophic failures and are a grave threat to an uninterrupted operation and performance. A 
crack may propagate from some small imperfections on the surface of the body or inside of the material and it is 
most likely to appear in correspondence to high stress concentration. Crack propagation path is generally 
determined by the direction of maximum stress or by the minimum material strength. Hence determination of 
stresses induced has been the focus of attention for many researchers. In the present work, development of a 
mathematical model to determine the stresses induced in a rotating disc of varying thickness is studied. This 
model is applied to a steam turbine rotor disc to determine the induced stresses and radial deflection. The 
mathematical modeling results are validated with the results obtained using Ansys package. The results of the 
present study will be useful in diagnosing the location and magnitude of maximum stress induced in the turbine 
rotor disc and stress intensity factor due to the presence of crack. 
 
Key words: rotor disc, radial and tangential stress, steam turbine rotor. 

 
1. Introduction 
 
 Rotating members called rotors are subjected to different types of structural and thermal loading 
conditions. Some are directly related with angular velocity or angular acceleration like stresses induced 
because of centrifugal loads, angular acceleration and gyroscopic couple while the others are independent of 
rotation like axial thrust. For rotors having turbine blades, brake disks, varying temperature distribution 
makes the operating conditions even more severe and advancement in technology leads to high speed of 
rotation. For a given amount of power transmitted, torque can be reduced by lowering the mass of rotating 
members. Nowadays the operating conditions like high temperatures and thermal gradients and the need to 
increase the efficiency of components made researchers concentrate more on the stresses induced. Hence the 
analysis of stresses and strain states in rotors is to be made rigorously to make sure that the components can 
be designed safely. In addition to that, careful selection of materials, precise testing of finished components 
for failure, carrying of required non destructive tests on regular basis are also required. All the above means 
that rotating members are extremely hazardous during operating conditions. A dangerous case involves 
liberation of ballistic missiles which travel at very high speeds when catastrophic failure of rotors takes 
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place. Hence the designer must abide by all the design and safety requirements so that during the actual 
operating conditions safety is guaranteed. 
 The mechanisms which cause the blade fatigue and reduction of blade strength are reviewed by 
Naumann [1]. He also presented the commonly used blade root designs along with the corresponding 
strengths. Martínez et al. [2] developed a code in FORTRAN about the velocity distribution in the output of 
stator blades that have flow conditions of wet steam, in order to understand the causes of erosion on the 
blades of the last stages in the low pressure section of steam turbines. Mazur [3] mode metallographic 
analyses of cracked blades, natural frequency tests and analyses, blade stress analyses, unit’s operation 
parameters and history of events analyses, fracture mechanics and crack propagation analyses. Shankar [4] 
performed a 3D finite element analysis (FEA) of a low-pressure (LP) steam turbine bladed disk assembly at a 
constant speed loading condition. Plesiutschnig [5] analyzed cracks at the root of the third blade row of low-
pressure steam turbine blades of different natural frequencies.  
 In this paper, the issues related to the determination of stresses induced in rotors under steady state 
conditions subjected to the loads because of rotation, i.e. centrifugal loads, are addressed. 
 
2. General differential equation for rotating disk subjected to non zero thermal load 
 
 The stresses induced in rotors are three dimensional as they are of complex geometry. Hence in order 
to obtain the meaningful results, there is a need to have some assumptions so that these assumptions simplify 
the complexity of the problem and lead to closed form solutions.  
 One assumption that can be made is the axial symmetry with reference to the geometrical shape and 
also forces acting. Even though the symmetry related to geometry may not be justified completely, but the 
effect of disk uniformities can be considered later as localized effect. Another assumption that can be 
introduced is planes stress, if the dimensions along the axial direction are not too large. This type of rotating 
member is called a thin disc. With this assumption, the loads acting are considered on the xy plane and the 
stresses acting along the z direction can be considered as zero and the stress state is plane .This assumption 
makes the stress state independent of the axial direction and two coordinates r and ϴ are sufficient to 
completely describe the problem so that the problem now becomes two dimensional. 
 The differential Eq.(2.1) which represents a rotating disc subjected to a non zero temperature 
gradient along the radius is   
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E
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d v 1 dt 1 dv dt 1 dT T dt r
v 1 1 0
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 (2.1) 

 

where v the displacement, t represents the thickness of the rotating disc, T represents the temperature 
variation along the radius, r is the radius of the disc from the axis of rotation, α is the thermal coefficient of 
linear expansion, E is the Young’s modulus of the material and ω is the angular velocity of rotation. 
 
3. General formulation of disc with varying thickness 
 
         The disks employed in turbines are generally conical in nature whose thickness varies with radius as t=t(r).  
 

 
 

Fig.1. Conical rotating disc of varying thickness. 

R

t

r

t0



Theoretical investigation of stresses induced ...  297 

 

 For a conical disc as shown in Fig1. t=t0(1-k) where t is a dimensionless variable representing the 

radius and is given by 
r

k
R

 , t0 is the imaginary disc thickness at the axis. 

 To derive the standard equation for the displacement field of a disc of varying thickness, the above 
relation is introduced in the equation along with its derivatives with respect to t. Now we obtain the 
following second order differential equation using the above. The equation is modified as 
 

  ( ) ( ) ( )
2

2 3 3 3 4
2

d v dv
k 1 k k 1 2k 1 k k v CR k CR k

dtdt
           

where             (3.1)

  
 υ γω

E

2 21
C


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The solution for the above equation is determined by adding the particular integral of the entire 

equation to the solution of the associated homogeneous equation. 
 
4. Combined stress state 
 
 As stated earlier, the displacement and stress state in a varying thickness disc can be obtained by 
adding the solutions of the associated homogeneous differential equation and corresponding particular 
integral.  
 Thus the radial displacement is given by 
 
   1 1 2 2 pv C q C q v    

 
and the radial and tangential stresses induced are given by 
 

  σr r rAa Bb  +σ0 rg ,                              (4.1) 
 
  σt t t 0 tAa Bb g   .         (4.2) 
 
 We will now consider the following four cases to determine the unknown constants A and B while 
considering these assumptions 
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 The constants A and B are determined using the conditions of radial stress at the inner or outer 
radius. For four different cases the above constants are determined and the corresponding equations for 
radial, tangential stresses and radial displacement are given below. 
 For a disc loaded at the outer radius 
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 For a disc loaded at the inner radius  
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 For a disc loaded at both the inner and outer radii  
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 For a disc loaded by centrifugal force only 
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5. Case study 
 

 The equations derived above are applied to determine the stresses induced at blade mounting 
locations of a steam turbine rotor. The mechanical component as shown in the figure is the axisymmetric 
plane of a steam turbine rotor disc with radii at different sections as a1, a2, a3, a4 and a5. The thicknesses at 
the corresponding sections are b1, b2, b3, b4 and b5. The disc rotates with an angular velocity of 2600 rpm. 
The surface forces acting at radii a1, a2, a4 and a5 are considered as zero and the only surface force 
considered is at radii a3. This force is  the centrifugal force due to the rotation of the blade. Now using the 
equations derived above, the stresses as well as the radial displacement are determined. 
 To analyze this problem, first it is necessary to determine the stresses at radii a1, a2, a3 and a4 which 
are designated as σa1, σa2, σa3 and σa4. Hence there are four unknown stresses which are to be determined. For 
this we use the compatibility equations of radial displacement, i.e. at each radius, the radial displacement of 
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the outer edge of the inner zone is equal to the radial displacement of the inner edge of the outer zone. Again, 
the principle of superposition is used to determine the radial displacement at each interface. 
 

 
 

Fig.2. Blade mounting location of turbine rotor. 
 
 At interface A of radius a1, the radial displacement considering the interface A on zone 1 is equated 
with the radial displacement considering the same interface A on zone 2 to determine a linear equation with 
unknowns σa1 and σa2. The radial displacement of interface A considering it on zone 1 is equal to the sum of 
two contributions determined at radius a1, i.e. the radial displacement due to the centrifugal force of zone 1 
and stress σa1.  
 The radial displacement of the same interface A considering it on zone 2 is equal to the sum of three 
contributions again determined at radius a1, i.e. the radial displacement due to the centrifugal force on zone2, 
stress σa1 and stress σa2. 
 At interface B of radius a2, the radial displacement considering the interface B on zone 2 is equated 
to the radial displacement considering the same interface B on zone 3 to determine the second linear equation 
with unknowns σa2 and σa3. The radial displacement of interface B considering it on zone 2 is equal to the 
sum of three contributions determined at radius a2, i.e. the radial displacement due to the centrifugal force of 
zone 2 and stress σa1 and stress σa2. The radial displacement of the same interface B considering it on zone 3 
is equal to the sum of three contributions again determined at radius a2, i.e. the radial displacement due to the 
centrifugal force on zone 3, stress σa2 and stress σa3. 
 At interface C of radius a3, the radial displacement considering the interface C on zone 3 is equated 
to the radial displacement considering the same interface C on zone 4 to determine the third linear equation 
with unknowns σa3 and σa4. The radial displacement of interface C considering it on zone 3 is equal to the 
sum of three contributions determined at radius a3, i.e. the radial displacement due to the centrifugal force of 
zone 3 and stress σa2 and stress σa3. The radial displacement of the same interface C considering it on zone 4 
is equal to the sum of three contributions again determined at radius a3, i.e. the radial displacement due to the 
centrifugal force on zone4, stress σa3 and stress σa4. 
 At interface D of radius a4, the radial displacement considering the interface D on zone 4 is equated 
to the radial displacement considering the same interface D on zone 5 to determine the fourth linear equation 
with unknowns σa4 and σa5. The radial displacement of interface D considering it on zone 4 is equal to the 
sum of three contributions determined at radius a4, i.e. the radial displacement due to the centrifugal force of 
zone 4 and stress σa3 and stress σa4. The radial displacement of the same interface D considering it on zone 5 
is equal to the sum of two contributions again determined at radius a4, i.e. the radial displacement due to the 
centrifugal force on zone 5, stress σa4. 
 The four linear equations are solved and the stresses σa1, σa2, σa3 and σa4 at the interfaces A, B, C and 
D are determined.  
 

6. Results 
 

Using the analytical equations derived for a rotating disc and applying these equations for a steam 
turbine rotor disc, the tangential stress, radial stress and radial displacement are determined along the radius. 

1

A
B C D

2

3 4 5
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The variations of theses parameters with respect to the radius from the axis of rotation are plotted. The 
variation of radial stresses with respect to the radius is given in Tabs 1-5 and plot is shown in Figs 3-7. The 
tangential stresses developed are determined and the variation of these stresses is presented in Tabs 6-10 and 
Figs 9-13. The variation of radial stress, tangential stress and radial displacement against the entire radius is 
shown in Fig.8 and Figs 14-15. 

 
Table 1. Variation of radial stress in zone 1.  
 

Radius ( m ) 

Radial Stress (MN/m2) 

without  
centrifugal force 

   with  
centrifugal force

0.000 44.46 47.41 
0.040 47.75 50.7 
0.081 49.76 52.71 
0.121 49.03 51.98 
0.161 46.11 49.06 
0.202 42.27 45.21 
0.242 37.14 40.09 
 

 
 

        Fig.3. Variation of radial stress in zone 1. 
 

Table 2. Variation of radial stress in zone 2. 
 

Radius ( m ) 

Radial Stress (MN/m2) 

without  
centrifugal force 

    with  
centrifugal force

0.242 56.43 57.82 
0.284 62.1 63.28 
0.325 58.32 59.64 
0.367 52.65 54.19 
0.409 45.08 46.91 
0.450 34.69 36.91 
0.492 18.62 21.46 
 

 

        Fig.4. Variation of radial stress in zone 2. 
 

Table 3. Variation of radial stress in zone 3.  
 

Radius (m) 
Radial Stress (MN/m2) 

without  
centrifugal force 

   with  
centrifugal force

0.492 23.19 29.33 
0.495 30.42 33.86 
0.499 34.84 36.62 
0.502 33.23 35.62 
0.505 26.8 31.59 
0.509 18.36 26.3 
0.512 7.12 19.26 
 

 

        Fig.5. Variation of radial stress in zone 3.  
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Table 4. Variation of radial stress in zone 4. 
 

 

Radius (m) 

Radial Stress (MN/m2) 

without  
centrifugal force 

  with  
centrifugal force

0.512 9.26 57.26 
0.513 11.38 72.93 
0.515 12.69 82.52 
0.516 12.21 79.03 
0.517 10.32 65.1 
0.519 7.84 46.8 
0.520 4.53 22.41 
 
        Fig.6. Variation of radial stress in zone 4. 
 
Table 5. Variation of radial stress in zone 5.  
 

Radius ( m ) 

Radial Stress (MN/m2) 

without  
centrifugal force 

  with  
centrifugal force

0.520 5.63 17.33 
0.523 8.16 25.12 
0.526 9.7 29.89 
0.529 9.14 28.15 
0.531 6.89 21.22 
0.534 3.94 12.13 
0.537 0 0 
 

 
        Fig.7. Variation of radial stress in zone 5.  
 

 
 

Fig.8. Variation of radial stress in all the zones. 
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Table 6. Variation of tangential stress in zone 1. 
 

Radius ( m ) 
Tangential Stress (MN/m2) 
without  

centrifugal force 
with  

centrifugal force
0.000 44.48 47.49 
0.040 44.12 47.12 
0.081 43.06 46.03 
0.121 41.68 44.62 
0.161 40.88 43.8 
0.202 40.48 43.39 
0.242 40.26 43.16 
 

 
       Fig.9. Variation of tangential stress in zone 1.  
 
Table 7. Variation of tangential stress in zone 2.  
 

Radius ( m ) 
Tangential Stress (MN/m2) 
without  

centrifugal force 
         with  

centrifugal force
0.242 42.88 48.58 
0.284 40.91 46.53 
0.325 35 40.38 
0.367 27.36 32.44 
0.409 22.93 27.83 
0.450 20.71 25.53 
0.492 19.48 24.25 
 

 
       Fig.10. Variation of tangential stress in zone 2. 
 
Table 8. Variation of tangential stress in zone 3.  
 

Radius ( m ) 

Tangential Stress (MN/m2) 

without  
centrifugal force 

         with  
centrifugal force

0.492 23.55 34.76 
0.495 23.35 33.87 
0.499 22.76 31.21 
0.502 22.01 27.77 
0.505 21.57 25.77 
0.509 21.35 24.77 
0.512 21.23 24.22 
 

 
       Fig.11. Variation of tangential stress in zone 3.  
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Table 9. Variation of tangential stress in zone 4. 
 

 

Radius (m) 

Tangential Stress (MN/m2) 

without  
centrifugal force

  with  
centrifugal force

0.512 23.38 24.96 
0.513 23.04 24.87 
0.515 22.03 24.62 
0.516 20.71 24.29 
0.517 19.95 24.1 
0.519 19.57 24.1 
0.520 19.36 23.95 

 
       Fig.12 Variation of tangential stress in zone 4. 
 
Table 10. Variation of tangential stress in zone 5.  
 

Radius ( m ) 

Tangential Stress (MN/m2) 

without  
centrifugal force 

 with  
centrifugal force

0.520 36.82 38.48 
0.523 36.51 38.15 
0.526 35.57 37.16 
0.529 34.36 35.89 
0.531 33.65 35.15 
0.534 33.3 34.79 
0.537 33.11 34.59 
 

 
       Fig.13. Variation of tangential stress in zone 5.  
 

 
 

Fig.14. Variation of tangential stress in all the zones. 
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Fig.15. Variation of radial displacement in all the zones. 
 
7. Determination of stresses and displacement using Ansys 
 
        The stresses induced at blade mounting locations in the turbine rotor are also determined by solving 
the problem using Ansys package. The problem is considered an axi symmetric problem and the finite 
element model is shown in Fig.16. PLANE183 element is used in the analysis and the meshed model is 
shown in Fig.17. Path operations are used to plot the variations of radial stress, tangential stress and radial 
displacement as shown in Figs 18-23. The results obtained using mathematical model are compared with 
these results and the error is shown in Tab.11.  
 

 
 

Fig.16. Finite element model of steam turbine rotor. 
 

 
 

Fig.17. Meshed model of steam turbine rotor. 
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Fig.18. Variation of radial stress 
(without centrifugal force). 

Fig.19. Variation of radial stress  
(with centrifugal force). 

 

        
 

Fig.20. Variation of tangential stress 
(without centrifugal force). 

Fig.21. Variation of tangential stress  
(with centrifugal force). 

 

     
 

Fig.22. Variation of radial displacement 
(without centrifugal force). 

Fig.23. Variation of radial displacement 
(with centrifugal force). 
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Table 11. Comparison of radial and tangential stresses obtained using mathematical model and Ansys. 
 

Zone 
Radius 

(m) 

Radial Stress – MN/m2 
(without centrifugal force) 

Radial Stress -MN/m2 
(with centrifugal force) 

Tangential Stress - MN/m2 
(without centrifugal force) 

Tangential Stress- MN/m2 
(with centrifugal force) 

Mathematical 
model 

Ansys 
Error 
(%) 

Mathematical 
model 

Ansys
Error 
(%) 

Mathematical 
model 

Ansys
Error 
(%) 

Mathematical 
model 

Ansys
Error 
(%) 

1 

0 44.46 44.26 0.46 47.41 47.51 -0.22 44.48 44.26 0.50 47.49 47.53 -0.07
0.04 47.75 47.24 1.07 50.7 50.39 0.62 44.12 43.98 0.32 47.12 47.21 -0.20
0.081 49.76 49.06 1.40 52.71 52.14 1.08 43.06 43.15 -0.20 46.03 46.28 -0.54
0.121 49.03 48.4 1.28 51.98 51.5 0.92 41.68 42.07 -0.93 44.62 45.07 -1.01
0.161 46.11 45.75 0.78 49.06 48.95 0.23 40.88 41.44 -1.38 43.8 44.37 -1.30
0.202 42.27 42.27 0.01 45.21 45.6 -0.85 40.48 41.13 -1.61 43.39 44.02 -1.45
0.242 37.14 37.63 -1.31 40.09 41.13 -2.58 40.26 40.96 -1.73 43.16 43.83 -1.54

2 

0.242 56.43 56.72 -0.51 57.82 58.01 -0.33 42.88 43.58 -1.63 48.58 49.26 -1.40
0.284 62.1 62.94 -1.35 63.28 63.73 -0.70 40.91 41.6 -1.68 46.53 47.19 -1.42
0.325 58.32 58.76 -0.75 59.64 60.37 -1.22 35.1 35.65 -1.84 40.38 41.1 -1.52
0.367 52.65 52.98 -0.63 54.19 54.52 -0.61 27.36 27.96 -2.19 32.44 32.99 -1.69
0.409 45.08 45.46 -0.84 46.91 47.65 -1.58 22.93 23.5 -2.47 27.83 28.34 -1.84
0.45 34.69 35.02 -0.95 36.91 37.31 -1.08 20.71 21.27 -2.68 25.53 26.02 -1.91
0.492 18.62 18.95 -1.77 21.46 21.83 -1.70 19.48 20.03 -2.80 24.25 24.73 -1.96

3 

0.492 23.19 23.65 -1.97 29.33 30.15 -2.78 23.55 24.18 -2.67 34.76 35.43 -1.92
0.495 30.42 30.98 -1.84 33.86 34.69 -2.45 23.35 23.98 -2.71 33.87 34.54 -1.97
0.499 34.84 35.46 -1.79 36.62 37.47 -2.31 22.76 23.4 -2.80 31.21 31.87 -2.10
0.502 33.23 33.83 -1.82 35.62 36.46 -2.35 22.01 22.64 -2.86 27.77 28.42 -2.33
0.505 26.8 27.31 -1.92 31.59 32.42 -2.62 21.57 22.2 -2.92 25.77 26.42 -2.51
0.509 18.36 18.76 -2.16 26.3 27.12 -3.11 21.35 21.98 -2.96 24.77 25.42 -2.60
0.512 7.12 7.35 -3.17 19.26 19.95 -4.10 21.23 21.86 -2.96 24.22 24.86 -2.64

4 

0.512 9.26 9.51 -2.70 57.26 58.13 -1.51 23.38 23.96 -2.48 24.96 25.75 -3.16
0.513 11.38 11.72 -2.99 72.93 74.05 -1.53 23.04 23.62 -2.53 24.87 25.66 -3.17
0.515 12.69 13.08 -3.07 82.52 83.78 -1.53 22.03 22.61 -2.64 24.62 25.39 -3.12
0.516 12.21 12.51 -2.46 79.03 80.24 -1.53 20.71 21.31 -2.88 24.29 25.04 -3.08
0.517 10.32 10.59 -2.62 65.1 66.09 -1.52 19.95 20.55 -3.00 24.1 24.84 -3.05
0.519 7.84 8.08 -3.06 46.8 47.51 -1.52 19.57 20.17 -3.06 24.1 24.73 -3.06
0.52 4.53 4.62 -1.99 22.41 22.75 -1.50 19.36 19.96 -3.09 23.95 24.68 -3.04

5 

0.52 5.63 5.82 -3.37 17.33 17.83 -2.86 36.82 37.65 -2.24 38.48 39.17 -1.80
0.523 8.16 8.29 -1.59 25.12 25.85 -2.89 36.51 37.33 -2.23 38.15 38.84 -1.82
0.526 9.7 9.91 -2.16 29.89 30.75 -2.87 35.57 36.37 -2.24 37.16 37.85 -1.86
0.529 9.14 9.33 -2.08 28.15 28.97 -2.90 34.36 35.13 -2.23 35.89 36.57 -1.89
0.531 6.89 7.01 -1.74 21.22 21.84 -2.90 33.65 34.41 -2.25 35.15 35.82 -1.92
0.534 3.94 4.05 -2.79 12.13 12.48 -2.87 33.3 34.05 -2.25 34.79 35.45 -1.90
0.537 0 0 0.00 0 0 0.00 33.11 33.85 -2.23 34.59 35.25 -1.90

 
8. Conclusions 
 
 The analytical solution of the general differential equation for a rotating disk of varying thickness 
subjected to a non-zero thermal load with the displacement as primary variable is derived. By applying 
different boundary conditions, the unknown constants in the solution are determined and general equations 
for the radial stress, tangential stress and radial displacement are derived. These equations are applied to 
analyze the stresses induced and radial displacement in a steam turbine rotor disc. The variations of radial 
stress, tangential stress and radial displacement are plotted and the following conclusions are made. It is 
observed that the centrifugal force because of the rotation of blades increases the radial and tangential 
stresses along the entire radius. Especially at the junction between zones 3 and 4 where the centrifugal force 
is considered, there is a sudden increase in the radial stress which signals the initiation of crack at this 
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junction. The variation of radial displacement indicates that the maximum displacement occurs at the 
junction between zones 4 and 5. The results obtained using the mathematical model approach is validated 
with Ansys results and the error is less than 4%.  

 

Nomenclature 
 

 E  Young’s modulus 
 k  dimensionless radius parameter, r/R 
 R  outer radius of rotor  
 r  radius from axis of rotor 
 T  temperature distribution 
 t  thickness at the crack location 
 v  radial displacement  
 α  coefficient of thermal expansion 
 σr  radial stress 
 σt  tangential stress 
 σ0  reference tangential stress at outer radius 
 ϒ  mass density 
 υ  poisson ratio 
 ω  angular velocity 
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