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MHD slip flow past an extending surface with third type (convective) boundary condition and thermal 
radiation is analysed. The governing momentum and energy equations are converted into set of nonlinear 
ordinary differential equations using appropriate similarity transformations. The Fourth-Order Runge-Kutta 
shooting method is applied for obtaining the numerical solution of the resulting nonlinear ordinary differential 
equations. The numerical results for velocity and temperature distribution are found for different values of the 
vital parameters, namely: the magnetic interaction factor, slip factor, convective factor, Prandtl number and 
radiation factor and are presented graphically, and discussed. 
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1. Introduction 
 
 Forced convection flows with radiation heat transfer effects are of prime importance in space science 
and high temperature processes. In literature, many studies pertaining to the effect of MHD flow past a body 
with radiation have been recorded. Further, effects due to thermal radiation play a predominant role in 
polymer industries for heat process control. Radiative MHD flows with enormous temperature often occur in 
power generation, re-entry of space vehicle into the earth atmosphere, atomic engineering and other 
industrial process. Soundalgerkar et al. [1] investigated radiation effects past a semi-infinite flat plate for a 
free convection flow of a gas. Boundary layer effects under thermal radiation for an absorbing and emitting 
media were explored by Viskanta and Grosh [2]. Combined radiative MHD heat transfer models were 
discussed by Mosa [3]. Hossain and Takhar [4], investigated the radiation effect of an optically dense fluid 
with uniform free stream velocity and surface temperature over a heated vertical plate. Thermal radiation due 
to the Rosseland diffusion approximation was taken into consideration by them for grey gases that emit and 
absorb, but do not scatter.       
 Hossain et al. [5] discussed the effects of radiation in the dearth of a magnetic field and viscous 
dissipation for a heat transfer problem under free convection. Radiation effect son heat transfer over a 
stretching surface were investigated by Elbashbeshy [6]. Duwari and Damesh [7] investigated the MHD 
effect for a fluid flow past a vertical sheet under radiation-conduction interaction in free and mixed 
convection. Pop et al. [8] studied the flow near the quiescence point of an elongating sheet under radiation 
effects. The radiation effect in Blasius flow was analysed by Cortell [9]. Heat transfer flow about an inclined 
plane under the influence of MHD mixed convection was studied by Aydin and Kaya [10]. 
 Mukhopadhy et al. [11] examined the effect of a steady boundary layer, heat transfer flow past a 
porous stimulative plate under the influence of nonlinear radiation. MHD flow with heat transfer over a 
surface extending with a power law velocity by taking the effects of variable viscosity and nonlinear 
radiation was analysed by Anjali Devi and Gururaj [12]. Thermal radiation and heat transfer effects on an 
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unsteady flow of MHD micropolar fluid subjected to suction over a flat plate were analysed by Shit et al. 
[13]. Sandeep et al. [14] investigated the boundary layer flow of a nanofluid over a nonlinearly permeable 
stretching sheet under radiation effects. Radiation effects on MHD flow past a stretching sheet with variable 
viscosity and heat source/sink under slip condition were analysed by Devi et al. [15]. 
 Recently, investigations pertaining to a boundary layer flow with third type (convective) boundary 
conditions have gained immense importance. The pioneer in this study was Aziz [16], who considered the 
convective surface boundary condition in the study of a thermal boundary layer flow over a flat plate in a 
uniform stream. Similarity solutions for the steady laminar boundary layer flow over a permeable plate with 
a convective boundary condition were investigated by Ishak [17]. The effect of a convective boundary 
condition on two dimensional boundary layer flows past an extending sheet in a nanofluid was investigated 
by Makinde and Aziz [18]. Ashikin et al. [19] investigated the boundary layer flow over a stretching sheet 
with slip and convective boundary condition effect. MHD stagnation point flow of a nanofluid towards an 
extending surface with convective boundary condition with thermal radiation was analysed by Noreen Sher 
Akbar et al. [20]. Ramesh and Gireesha [21] investigated the influence of heat source/sink on a Maxwell 
fluid over a stretching surface with contribution of nanoparticles under the effect of convective boundary.  
Recently, Rahman et al. [22] discussed the boundary layer flow of a nanofluid past a permeable 
exponentially shrinking surface with convective boundary condition employing Buongiorno’s model.   
 No contribution has been made to study radiation effects on MHD boundary layer slip flow past a 
stretching surface with third type (convective) boundary condition which forms the backbone of the current 
study. 
 
2. Problem formulation 
 
 MHD laminar two dimensional boundary layer slip flow of a viscous, incompressible, electrically 
conducting and radiating fluid past an extending surface under the third type (convective) boundary 
condition is considered. A magnetic field is applied in the y  direction and the fluid under consideration is 
taken to be grey. Further, the fluid is an absorbing and emitting and non-scattering medium with constant 
physical properties. The x -axis is taken along the stretching surface and the y -axis normal to the stretching 

surface. The stretching surface is stretched with velocity ,wu ax  where .a 0  The continuity, momentum 
and energy equations under the usual boundary layer assumptions can be written as 
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where u  and v  are the velocity components in the x  and y  directions, respectively, T  is the temperature, 

  is the kinematic viscosity,   - electrical conductivity of the fluid. oB  is the magnetic field strength,  

  - density of the fluid, pc  - specific heat at constant pressure,   - thermal conductivity of the fluid,  

L  - proportional constant of the velocity slip and rq  - radiative heat flux. For very small magnetic Reynolds 
number, the induced magnetic field is assumed to be negligible in comparison with the applied magnetic 
field and hence neglected. The radiative heat flux in the energy expression is given by the expression 
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where *  and *k  are the Stephen-Boltzmann constant and Rosseland mean absorption coefficient, 

respectively. For adequately small temperature differences within the flow, 4T  can be expressed as a linear 
function of temperature. Hence using the Taylor series expansion we have 
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 Using Eq.(2.5) the energy Eq.(2.3) becomes 
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  The velocity field boundary conditions are given as  
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 The heat transfer coefficient fh  is generated due to the heating of the bottom surface by convection 

due to a hot fluid with temperature  fT  , and hence the boundary condition for the energy field can be written 

as  
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 The continuity Eq.(2.1) is satisfied by introducing a stream function  ,x y  defined in an usual 

form as 
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 The similarity solutions for Eqs (2.1)-(2.3) with the boundary conditions (2.7)-(2.8) are obtained by 
introducing the following similarity transformation 
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 Introducing (2.9) into Eqs (2.2) and (2.3) subject to boundary conditions (2.7) and (2.8), the 
following nonlinear ordinary differential equations are obtained  
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where the prime denotes differentiation with respect to , 
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the convective factor. 
 
3. Numerical solutions 
 
 Equations (2.10) and (2.11) are coupled nonlinear ordinary differential equations which constitute 
the required nonlinear boundary value problem that has to be analysed. The resulting nonlinear boundary 
value problem is reduced to an initial value problem by utilizing the shooting method and is solved 
numerically using the fourth-order Runge-Kutta technique subject to the boundary conditions given by 

Eq.(2.12). To kick start the shooting process, initial guesses for the values of  ''f 0  and  0  are made. 

Different initial guesses were made for different values of physical factors in accordance with convergence. 
Numerical results are obtained for several values of the physical factors , , ,Pr and M K R . 

 
4. Numerical results and discussion 
 
 Numerical solutions of the problem concerned with MHD slip flow past an extending surface with 
third type (convective) boundary condition with thermal radiation are obtained for different values of the 
physical factors involved in the problem, namely: the magnetic interface factor  M , slip factor  K , 

convective factor   , Prandtl number (Pr) and radiation factor  R  and are displayed graphically. 

 
4.1. Validation result 
 
 To validate the current study, the results are compared with those of Nor Ashikin et al. [19], which 
are portrayed through Figs 1 to 4. It is evident from the figures that the results are in good agreement in the 
absences of the magnetic effect and radiation.   
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Fig.1. Velocity profile for K=1.0 and M=0.0. 
 

 
 

Fig.2. Velocity profile for various K when M=0.0. 
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Fig.3. Temperature profiles for different values of   when Pr=1.0, K=1.0 and R=0.0. 
 

 
 

Fig.4. Temperature profiles for different values of Pr with K=1.0 and .0 5  . 
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4.2. Impact of magnetic interaction factor on the velocity field 
 
 Figure 5 shows that for an increasing M, the Lorentz force caused by the magnetic field will act 
against the motion of the fluid and hence there is a decrease in the velocity. Further for larger values of M , 
the flow profile starts to become flatter with steep gradients close to the wall which satisfies the no-slip 
boundary condition  .K 0 0 . 

 

 
 

Fig.5. Velocity profiles for various M when K=1.0. 
 
4.3. Impact of slip factor 
 
 It is seen from Fig.6 that as the slip factor   K  increases, the momentum boundary layer decreases 

rapidly. Further, it can be inferred that the skin friction coefficient  ''f 0  drops at the boundary layer and is 

inversely proportional to the slip factor in magnitude. It is also noted that the presence of the magnetic effect 
enhances the reduction of the momentum boundary layer for an increasing slip factor  K . 
 



584                                                                                                             A.D.M.Gururaj, S.Dhanasekar and V.Parthiban 

 
 

Fig.6. Velocity profiles for various K when M=1.0. 
 
4.4. Impact of radiation factor 
 
 It is interesting to note from Fig.7 that the thermal boundary layer increases rapidly for an 
increasing radiation factor R which has an opposite trend to that found in the literature. This happens due 
to heating of the bottom surface of the plate by a hot fluid, which is reflected by the presence of the 
convective factor. 

 Figure 8 shows the temperature profile when the radiation factor 9R 10 . It can be noted that as R  

tends to become larger,  ''   becomes zero. The temperature     thus becomes a linear function of   

which is ascertained from Fig.8. It is also evident that the temperature decreases when we move farther along 
the surface for larger values of R . 
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Fig.7. Temperature profile for different values of R when Pr=1.0, K=1.1, M=1.0 and .0 5  . 
 

 
 

Fig.8. Temperature profile for R=109 when Pr=1, K=1, M=1.0 and .0 5  . 
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4.5. Impact of convective factor 
 
 The impact of the convective factor   on temperature is elucidated in Fig.9. It is seen that the 

surface and the fluid temperature increases when   is increased that leads to the enhancement of the thermal 

boundary layer thickness. For increasing  , the strength of convective heating on the surface increases which 
leads to an increase in the convective heat transfer from the hot fluid on the lower surface to the fluid on the 
upper surface. 
 

 
 

Fig.9. Temperature profile for various values of when M=1.0, Pr=1.0, K=1.1 and .R 5 0 . 
 
4.6. Impact of Prandtl number 
 
 Figure10 exhibits the variation in dimensionless temperature for various values of Pr. It is seen that 
as Pr increases the thermal boundary layer thickness decreases due to the fact that a higher Pr value leads to 
low thermal conductivity reducing the conduction, which in turn diminishes the boundary layer and 
temperature. It is also noted that as the thermal gradient at the surface increases, the effect of the Prandtl 
number is to enhance the heat transfer rate at the surface. 
 
4.7. Impact of magnetic interaction factor on the temperature field 
 
 The impact of the magnetic interaction factor M  over the temperature field is presented in Fig.11. It 
can be noted that the heat transfer gets enhanced for increasing M  as expected under the influence of 
radiation and convective heating. 
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Fig.10. Temperature profile for various values of Pr when M=1.0, K=1.1, .0 5   and .R 5 0 . 
 

 
 

Fig.11. Temperature profiles for various values of M when .0 5  , Pr=1.0, K=1.1 and .R 5 0 . 
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5. Conclusion 
 
 In this study, the problem of thermal radiation MHD boundary layer slip flow past a stretching 
surface with convective boundary condition is investigated. Graphical results are presented for different 
physical parameters of the problem, namely the magnetic interaction factor  M , slip factor  K , 

convective factor   , radiation factor  R  and Prandtl number (Pr). 

 In the non-existence of magnetic field and thermal radiation, the results are in good agreement with 
those of Nor Ashikin et al. [19].  
 The following conclusions can be drawn from this study: 

 The Lorentz force caused by the magnetic field acts against the flow field and hence results in the 
decrease of velocity, but its effect is to increase the thermal boundary layer. 

 The skin-friction coefficient decreases at the boundary layer and is in reverse proportion to the slip 
parameter. 

 The thermal boundary layer increases rapidly for an increasing radiation parameter. This effect is due 
to hot fluid that heats the bottom surface of the plate. 

 As the radiation parameter becomes larger, the temperature becomes a linear function and the 
temperature decreases along the surface for a larger radiation parameter. 

 The strength of convective heating on the surface increases for an increasing convective parameter. 
 The Prandtl number enhances the heat transfer rate at the surface due to an increase in the thermal 

gradient. 
 
Nomenclature 
 
 a – extending rate 
 oB   magnetic field strength 

 pC   specific heat at constant pressure 

 fh   heat transfer coefficient 

 *k   Rosseland mean absorption coefficient 
 K  slip factor 
 L   proportional constant of the velocity slip 
 M  magnetic interaction factor 
 Pr  Prandtl number 
 R  radiation factor 
 T  temperature of the fluid 
 T   temperature of the ambient fluid 

 , u v   velocity component of the fluid in the x and y direction 

 wu   extending surface velocity 

 u   free stream velocity 

 rq   radiative heat flux 

 x  dimensional distance along the extending surface 
 y   dimensional distance normal to the extending surface 

     convective factor 

    similarity variable 

    dimensionless temperature 
    thermal conductivity of the fluid 
    kinematic viscosity 
    density of the fluid 
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    electrical conductivity of the fluid 

 *   Stephen-Boltzmann constant 
 ( , )x y   stream function 
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