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The paper presents a comprehensive analysis of the stress field near a crack tip for a compact specimen 
dominated by the plane strain state using the finite element method. The analysis also includes the calculation of 
some parameters of in-plane constraints, both for small and large strain assumptions. It discusses the influence of 
the material characteristic, relative crack length and external load for the stress field, and the in-plane constraint 
parameter. The approximation formulas for some in-plane constraint parameters are presented. 
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1. Introduction 
 
 One of many basic specimens used in fracture mechanics is a compact specimen, denoted by C(T). It 
appears in the ASTM standards [1, 2], British Standards [3, 4] or even the norm that is still in force in Poland 
in the didactic or research process [5]. The C(T) specimen was repeatedly used by various researchers to 
assess the cracking phenomena and fracture toughness of various materials [6-8]. The development of 
research methods, as well as the need for calibration used in experimental designs, have also repeatedly been 
the subject of scientific papers [9-11], in which the authors discussed the method of determining critical 
fracture toughness values based on C(T) specimens. 
 In 2012, Zhu and Joyce [12] presented an overview of methods for determining fracture toughness 
using C(T), SEN(B) and CC(T) specimens, indicating the need to consider the influence of geometric 
constraints in formulas approximating the equations of the J-R curves. The parameters of geometrical 
constraints mentioned in the paper [12] include the Q-stress (Q-parameter) defined by O'Dowd and Shih [13-
14] and the A2 parameter (described also as A2 amplitude) discussed by Yang et al. [15]. It should be 
remembered, however, that both parameters – Q and A2 are determined by numerical calculations with the 
assumption of small deformations and displacements, which leads to obtaining singular stress distributions 
near the crack tip (Fig.1a). It can be said that both parameters are a correction of the HRR solution presented 
in 1968 [16, 17] and improve the description of stress fields near the crack tip taking into account the 
influence of the other parts of the asymptotic solution. 
 As it is known, in the real structural element, the stresses in front of the crack tip are finite – such a 
distribution in numerical calculations is obtained by assuming large strains and large displacements (Fig.1a), 
which in the case of stress distribution leads to reach a maximum of the crack opening stress at a specific 
distance from the crack tip [18, 19] (Fig.1a). The value of this maximum, as well as its position near the 
crack tip, was used in [18] in the proposal of a modified crack criterion based on the RKR hypothesis [19]. 
The mentioned fracture criterion also uses the Q-stresses defined by O'Dowd and Shih [13, 14]. It should be 
noted that the level of maximum stresses and their position near the crack tip depends on the material 
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characteristics, geometry, and external load (Fig.1b), which is also shown in [18]. The same applies to the Q-
parameter, commonly referred to as Q-stresses; it also depends on the geometry of the structural element, 
material or external load (Fig.1c). 
 
a) 

 

b)  

 

c)  

 

 
Fig.1. a) The stress distribution near the crack tip for C(T); b) The influence of the external load on the 

maximum crack opening stress (normalized by yield stress) for C(T) specimens; c)The influence of 

the crack length on the Q=f(log(J/(a0)) trajectories for C(T) specimens (all graphs made on own 
calculations, using a method and presentation given by [21-24]). 

 The applications of the fracture mechanics to solving practical engineering problems require 
knowledge of the Q-parameter or/and the Maximum Crack Opening Stresses (MCOS) and their position in 
front of the crack tip. In addition, these parameters, generally referred to as in-plane constraints, are 
determined by carrying out comprehensive numerical calculations, the results of which are subject to detailed 
analysis (post-processing). The development of a numerical model allowing to estimate the measures of in-
plane constraints is not a trivial problem, as shown in [20]. Based on previous achievements [21-24], the 
author of this article presents a catalog of numerical solutions and their approximations, which for compact 
specimens allow to estimate the values of selected measurements of in-plane constraints depending on 
external load, crack length or material characteristics. 
 The concept of in-plane geometric constraints [18, 25, 26] should be understood as the resistance that 
the material of a structural element puts on developing plastic deformations. In fracture mechanics, in-plane 
geometric constraints are generally determined for plane strain using O'Dowd's Q-stress [13, 14], which are 
the difference between the actual stresses in the structural element (determined by the Finite Element Method 
– FEM) and HRR solution (shown in [21-23] for different geometries of the basic fracture specimens – 
SEN(B), CC(T), SEN(T)), determined according to theoretical formulas [16, 17]. In the case of plane strain, the 
Q-stresses usually have a non-zero value [21-23]. Therefore, speaking of a low level of in-plane constraints – 
characteristic for specimens with short and very short cracks, we mean a considerably negative value of Q-
stresses, but when speaking of a high level of in-plane constraints – characteristic for specimens containing 
long and very long cracks, we mean high Q-stress value [13, 14]. Therefore, for a comprehensive analysis of 
the stress state near the front of the crack in elastic-plastic materials dominated by plane strain, the choice of 
four different variants of the relative crack length is not coincidental. The same remarks apply to the FEM 
analysis carried out with the assumption of large deformations [24]. Both the maximum stresses opening up the 
fracture surfaces and their position near the crack tip depend on the relative length of the crack [24].  
 The considerations presented in [20] (some results were presented in [18]) showed, that the 
distribution of stresses near the crack tip in the case of assumptions of large strains is sensitive to the 
parameters of the FEM model (fracture tip modeling, crack radius size, finite element type, finite element 
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size [20]) – FEM model with the assumption of small deformations does not show such a sensitivity [20]. It 
turns out that the determination of convergent stress distributions, and thus the right values of geometrical 
constraint parameters (for which the Q-stress, A2 amplitude, maximum crack opening stress and their 
position from the crack tip can be considered), requires proper pre- and post-processing.  The result of the 
analyses should be a catalog of numerical solutions which, for the desired material and geometric 
characteristics, will allow to quickly assess the level of selected in-plane geometric constraints, depending on 
the external load, which can be expressed in the case of elastic-plastic materials using the J-integral or the 
external load normalized by limit load [21-24]. 
 A properly developed catalog of numerical solutions containing the values of geometric in-plane 
constraints can be used for: 

 a modified description of J-R curves [12]; 
 assessment of fracture toughness using the selected cracking criterion [18, 19, 25, 26]; 
 or for assessing the strength of a defect – a structural element containing a defect, using the appropriate 

level of the Failure Assessment Diagram (FAD) analysis given in FITNET procedures [25, 26]. 
 For this reason, in this paper an attempt was made to characterize the stress field near the crack tip in 
the C(T) specimen (otherwise called “compact specimen”), made of elastic-plastic material dominated by a 
plane strain. In the first step of the analysis, based on the theory of O'Dowd and Shih [13, 14], for sixteen 
hypothetical materials (differing by yield stress 0 and strain hardening exponent n), the level of the Q-
parameter was determined, as a function of J-integral (or its normalized value), using a well-known 
relationship [13-14, 21-23] 
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where ()FEM is the stress value calculated using FEM and ()HRR is stress value evaluated form HRR 
solution [16, 17] – both terms should be computed at a distance equal to r=2J/0 for the direction 
characterized by angle =0. The ()HRR were calculated using the following HRR solution [16, 17] 
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where r and  are polar coordinates of the coordinate system located at the crack tip, ij are the components 
of the stress tensor, J is the J-integral, n is R-O exponent (strain hardening exponent),  is R-O constant 
(strain hardening constant), 0 is yield stress, 0 is strain related to 0 through relationship 0 =0/E, E is the 
Young modulus. Functions  ,ij n  ,  nI n  must be found by solving the fourth order non-linear 

homogenous differential equation independently for plane stress and plane strain, using the computer 
program presented in [27]. 
 In this place, however, one should write a few remarks about Q-stresses and other parameters of 
geometrical constraints, which can be used in practical problems of fracture mechanics. The in plane 
constraint parameter denoted as Q, is based on the plane strain crack tip stress fields and it has been adopted 
to incorporate the constraint effect in fracture assessment of cracked structures in the R6 [42] and BS7910 
procedures [43]. But the Q parameter has limitation and loses its validity under large scale yielding and 
bending dominant loading, what was presented in [44]. In addition, both in-plane and out-of-plane 
constraints are generally existed in the actual engineering structures [45, 46]. Therefore, a unified constraint 
parameter which can characterize both constraints is required for a more accurate fracture assessment. In 
recent years, some unified constraint parameters have been proposed and developed [47-51]. 
 In the second step of the analysis, making the assumption of large deformations and large 
displacements, conducting specific numerical calculations, a second part of the catalog of numerical 
solutions was developed containing the maximum stresses opening the crack surfaces and their position near 
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the crack tip. All numerical results were given graphically, as the changes of parameters o=22_max/0 and 
o=(x22_max0)/J, which denote the maximum stress opening the crack surfaces normalized by the yield 
strengths and the normalized position o near the crack tip (the physical location of the maximum stress 
opening the crack surfaces is denoted by x22_max) respectively. 
 In the last step, next to the conclusions drawn, simple approximation formulas were proposed that 
allow to estimate the selected values of in-plane geometrical constraint parameters for a given material and 
geometric combination. All the results of numerical calculations and their approximations can be used in 
solving the various engineering problems mentioned above. 
 

2. Geometry specimen, loading, material characteristic, FEM details 
 
 In the calculations, the C(T) specimen was modeled in accordance with the applicable standards, 
based on EPRI [28], BS [3, 4] and ASTM [1, 2] (Fig.2a). The width of the specimen was set to W=40mm, 
four different relative crack lengths were modeled (a/W={0.05, 0.20, 0.50, 0.70}, where a means crack 
length), which guarantees a diversified level of in-plane constraints around the crack tip. In the calculations, 
sixteen hypothetical real stress-strain curves described by the power law (2.1) were used 
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wherein, that the power constant =1, Young modulus E=206GPa, Poisson’s ratio =0.3, yield stress 
0={315, 500, 1000, 1500}MPa, the strain hardening exponent n={3.36, 5, 10, 20}. The calculations were 
carried out in a fairly wide range of mechanical properties – from materials that strongly strengthened to 
weakly reinforcing materials. The exemplary stress-strain curves used in the numerical calculation are 
presented in Fig.2b. 
 

a) 

 

 

b)  

 

Fig.2. a) The C(T) specimen; b) The exemplary stress-strain curves used in the numerical calculation (twelve 
of the sixteen model stress –strain curves). 

 
 Using the existing symmetry axes, it was decided to model only half of the C(T) specimen in the 
FEM analysis (Fig.1a) [29, 30]. In the numerical calculations the contact issue was solved – the load of C(T) 
specimens was carried out with the help of a spindle (i.e., pin) (Fig.3a), characterized by diameter 10mm, 
which was modeled in the form of half of the arch, divided into 180 two-node contact Finite Elements (FEs). 
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An external load was applied to the pin in the form of a linearly increasing displacement. There were 181 
nodes on these contact surfaces realizing the external load of the specimen.  
 The crack tip was modeled in the form of a quarter of the arch, with radius rw within the limits of 
(1÷5)m. This means that the radius of the crack tip was in extreme cases 40000 and 8000 times smaller than 
the width of the sample (W=40mm). This crack tip was divided into 20 parts together with the density of the 
elements towards the edge lying in the axis of the specimen (depending on the material model and relative 
crack length, the edge finite elements were (5÷20) times smaller than the largest elements located in the 
central part of the arch) – see Fig.3c. The size of the radius of the crack tip was determined similarly as in the 
case of other bending specimens [20, 23, 24], including the level of external loading, material characteristic 
(expressed by the ratio 0/E and exponent n) and relative crack length (expressed by a/W). For each 
specimen, the peak area with a radius equal to approximately (1.0÷2.5)mm was divided into (35÷50) finite 
elements (FEs), wherein the smallest FE located at the crack tip was 100 times smaller than the previous one 
(Fig.3b). This meant that, in extreme cases, the smallest FE, located just next to the crack tip, represented 
about 1/70700 or 1/101000 of the width W of the specimen, and the largest modeling the peak area has the 
size of about 1/707 or 1/1010 of the specimen width. 
a) 

 

b)  
c) d) 

 

 
Fig.3. The C(T) specimen used in the numerical program: a) schematic technical drawing of the C(T) 

specimen with hatched part which was used in the FEM analysis; b) a half of the C(T) specimen with 
applied boundary conditions and external load; c) zoom of the peak area near crack tip; d) the shape 
of the crack tip. 

 
 The FEM analysis was carried out in parallel with the assumption of small deformations and 
small displacements (necessary to determine the Q-stresses defined by O’Dowd [13, 14] – see Eq.(1.1)) 
and assuming large strains and large displacements (necessary to determine maximum stresses opening 
the fracture surfaces). The FEM model was filled with nine-node Finite Elements (FEs), using the "2-D 
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SOLID plane strain" type and "mixed" interpolation with nine Numerical Integration Points (NIP)  
[29, 30]. 
 The J-integral referred to as the crack driving force, or the amplitude of the singular stress field near 
the crack tip, was determined using the method of virtual crack length growth [29, 30]. For the purposes of 
this paper, several integrating contours were defined, and taking into account the principle proposed by Guo 
[32] for three-dimensional solutions, where the integration contour required for the numerical estimation of 
the J-integral should be defined as “far-field contour” [32]. This approach also guarantees the invariance of 
the J-integral when assuming the analysis of large deformations and displacements, as shown in [20]. The J-
integral values obtained using virtual crack length growth were the same as the results for calculations done 
using the J-integral definition given by Rice [38], which was presented in [39].   
 An additional element of the numerical analysis was also the verification of solutions in the 
range of limit loads for the C(T) specimen, which in the case of plane strain state domination was given 
in [28] 
 
  .0 0P 1 455 b B       (2.2) 
 
wherein, b is uncracked ligament (b=W-a), B is specimen thickness (for plane strain it is assumed B=1m) and 
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Fig.4. a) Comparison of the calculated numerical limit load value and EPRI solutions [28] for C(T) specimen 

dominated by the plane strain state; b) Influence of the yield stress 0 and relative crack length a/W on 
limit loads for C(T) specimen dominated by the plane strain state (the approximation plane described 
by Eq.(2.3)). 

 
 The estimation of the limit loads was carried out on the same finite element grid as main 
calculations, assuming only elastic – a perfectly plastic material model. This step was carried out due to 
discrepancies between numerical solutions and analytical solutions for other basic geometries of fracture 
mechanics, which were mentioned in [33-35, 41]. The analysis confirmed the satisfactory convergence of the 
formula (2.2) with the numerical solution for the case of the crack, characterized by relative length a/W=0.50 
and a/W=0.70 (formula (2.2) guarantees for the above-mentioned crack length values lower than the 
numerically estimated about 8% and 5% respectively (Fig.4)) In the case of very short and short cracks 
(a/W=0.05 and a/W=0.20 respectively), the values obtained with the formula (2.2) are inflated in relation to 
those numerically estimated by almost 58% and 38%, respectively. 
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 The estimated values of limit loads presented above were subjected to simple approximation using 
available mathematical tools. One of the many proposed formulas that can be used to estimate the limit load 
value P0 is the polynomial form of dependence, taking into account the plasticity limit 0 inserted in [MPa] 
and the relative crack length a/W 
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a a a
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where the limit load value P0 is obtained in [kN], with the matching factor R2=0.993, using the following 
values of approximation factors: A1=-933.154, A2=10.262, A3=9612.613, A4=-5.9110-5, A5=-12986.874,  
A6=-11.429. 
   The next paragraph presents the results of numerical calculations that characterize the stress field 
near the crack tip in C(T) specimens (compact specimens). The reference to the relative values of the force 
acting on the specimen given in the chapters will refer to the cases of normalization by the value of the limit 
load determined for the purpose of this paper. 
 
3. Some numerical results 
 
 All calculations were done using the ADINA program [29, 30], using the analysis schemes 
developed over the years [18, 24-27]. The post-processing analysis was done for numerical results obtained 
for the assumption of small and large strains. In addition to the level of the selected geometric constraints, 
the level of selected stress tensor components, effective stresses calculated according to the Huber-Misses-
Hencky hypothesis, the size of the plastic zone, the triaxiality of stresses, and the level of accumulated 
plastic strain were also considered. Some numerical results are presented below for points lying in the 
direction =0 – along the line from the crack tip. 
 
3.1. Small strain assumption 
 
 Figure 5 presents the distribution of crack surfaces opening stresses near the crack of the fracture for 
three C(T) specimens, differing in the relative crack length a/W, for six levels of external load, normalized 
by the limit load P0, estimated for the purpose of this paper. 
 Figures 5a-c show the variations in the stresses opening the crack surfaces as a function of the 
normalized position relative to the crack tip, and Figs 5d-f as a function of the physical distance from the 
crack tip. As we move away from the crack tip, we observe a decrease in the level of stresses that open the 
fracture surfaces, which in the crack tip are aimed at a singular state. Referring to the changes presented in 
Figs 5d-f, it should be stated that the higher the level of external load, the greater the value of stresses 
opening the fracture surfaces in the same physical location near the crack tip. 
 The same tendency as described above is observed in the changes of effective stresses, presented as a 
function of the normalized distance from the crack tip (Figs 6a-c) and as a function of the physical distance 
(Figs 6d-f). The higher the level of external load, the greater the level of effective stress in the same physical 
location near the crack tip (Figs 6d-f). However, by normalizing the distance from the crack tip, a situation is 
reached, where the level of effective stresses estimated at a specified normalized distance from the crack tip 
decreases with the increase of the external load. Effective stresses increase as we move closer to the crack 
tip, striving for infinity (a singular field). The level of effective stress near the crack tip is reflected in 
developing plastic zones, which were estimated based on the level of effective stress – a plasticized region is 
taken to be a region where effective stresses are equal to or greater than the yield stress. 
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a) 
 

b)  c)  

 
 
d) 
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Fig.5.  The influence of the level of external load on crack opening stress zz for C(T) specimens dominated 

by plane strain (calculations for small strain assumptions): a, b, c – the stress distribution in the 
function normalized distance from crack tip (zz/0=f(r0/J)); d, e, f – the stress distribution in the 
function physical distance from crack tip (zz/0=f(r)). 

 
 Normalization of the physical distance from the crack tip according to the scheme proposed by 
O'Dowd and Shih [13, 14] (the normalized distance is expressed by the product of physical distance r and 
yield point 0 divided by the J-integral, as =r0/J) leads to a situation where the stresses opening the crack 
surfaces within the range of normalized distances =(01.5) do not depend on the level of external load 
(Figs 5a-c). For a normalized distance from the crack tip 1.5, the effect of the external load P/P0 on the 
crack opening stress is observed – the higher the level of external load, the smaller the stress values opening 
the fracture surfaces at the same normalized distance from the crack tip, expressed by the parameter 
=r0/J. 
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a) 
 

b)  c)  

 
 
d) 
 

 
e)  

 
f)  

 
 

Fig.6.  The influence of the level of external load on effective stress eff for C(T) specimens dominated by 
plane strain (calculations for small strain assumptions): a, b, c – the stress distribution in the function 
normalized distance from crack tip (eff/0=f(r0/J)); d, e, f – the stress distribution in the function 
physical distance from crack tip (eff/0=f(r)). 

 
 Figure 7 shows the change in the shape and size of the plastic zone for three C(T) specimens 
differing in the relative crack length a/W={0.05, 0.20, 0.70}, for three selected levels of external load 
P/P0={1.0, 1.50, 2.00}. As it can be seen, when the limit load level is reached – P/P0=1.00, the plastic zone 
for any of the analyzed geometries does not cover the uncracked ligament of the specimen (Figs 7a, d, g). In 
the case of specimens containing very short and short cracks (respectively a/W=0.05 and a/W=0.20), the 
plastic zone develops in close proximity to the crack tip and regions located around the place of external load 
application (Figs 7a-c and Figs 7d-e). In the case of a specimen containing the crack characterized by 
a/W=0.20, the plastic zone increases from the free edge of the specimen (bottom and top) towards the 
expanding plastic zone located opposite the crack tip (Fig.7f).  
 In the case of C(T) specimens characterized by very long cracks (a/W=0.70), the development of the 
plastic zone at the above-mentioned external load levels, shows trends presented in the professional literature 
[36] (Figs 7g-i). Among many analyzed geometries, full coverage of the uncracked ligament of the 
specimen, preventing the "transition" from the bottom to the upper edge of the specimen was observed in 
C(T) specimens with a relative crack length a/W=0.20 and external load P/P0=2.00, and for specimens 
characterized by long and very long cracks (respectively a/W=0.50 and a/W=0.70), with external load 
P/P01.50. 
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a) b)  c)  

  
d) e)  f)  

 

g) h)  i)  

 
 

Fig.7. The influence of the level of external load on the shape and size of plastic zone for C(T) specimens 
dominated by plane strain (calculations for small strain assumptions) for material characterized by 
n=5, 0=315MPa, E=206GPa, =0.3:  a, b, c – the plastic zones for C(T) specimen characterized by 
a/W=0.05, for P/P0={1.00, 1.50, 2.00} respectively; d, e, f – the plastic zones for C(T) specimen 
characterized by a/W=0.20, for P/P0={1.00, 1.50, 2.00} respectively; g, h, I – the plastic zones for 
C(T) specimen characterized by a/W=0.70 for P/P0={1.00, 1.50, 2.00} respectively. 

 
 The next parameter analyzed in the paper, related to the stress field near the crack tip, is the level of 
the stress triaxiality parameter, which in this paper is expressed by the ratio of stresses in the thickness 
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direction denoted as xx and the sum of stresses yy and zz (Fig.8). This parameter in the case of the 
dominance of pure plane stress state reaches a value equal to zero, while in the case of the dominance of pure 
plane strain state, the value is equal to 0.5 [32]. The changes in the value of the stress triaxiality parameter 
presented in Fig.8 lead to the following conclusions. The higher the level of external load, the smaller the 
value of the stress triaxiality parameter, assuming that we measure it at a normalized distance, denoted by , 
as mentioned above. However, if the values of the stress triaxiality coefficient measured at specific physical 
distances are evaluated, a phenomenon indicating an increase in the value of the stress triaxiality parameter 
with the increase of external load is observed, which is a natural phenomenon resulting from the increase of 
normal stresses due to the increase of external load. Also noteworthy is the completely different character of 
the curves, which are observed for C(T) specimens characterized by different crack length. 
 
a) b)  c)  

 
d) e)  f)  

 
 
Fig.8. The influence of the level of external load on the triaxiality parameter xx/(yy+zz), for C(T) 

specimens dominated by plane strain (calculations for small strain assumptions): a, b, c – the stress 
distribution in the function normalized distance from crack tip (xx/(yy+zz)=f(r0/J)); d, e, f – the 
stress distribution in the function physical distance from crack tip (xx/(yy+zz)=f(r)). 

 
 The value of the stress triaxiality parameter decreases with increasing distance from the crack tip, 
striving for a set value equal to 0.3, which is equal to the Poisson ratio assumed in calculations [32]. It should 
be noted that the analyzed stress triaxiality parameter, estimated according to the expression xx/(yy+zz), the 
value equal to 0.5 (characteristic for pure plane strain state) in the analyzed group of specimens reached 
almost at the crack tip, for specimens with a relative crack length a/W=0.50 and a/W=0.70 (Fig.8c and 
Fig.8f). In the case of C(T) specimens characterized by very short and short cracks (a/W=0.05 and a/W=0.20 
respectively), the value of the stress triaxiality parameter at the tip of the crack was generally less than 0.5. 
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 In addition to the stress field analysis, the influence of material characteristics and the relative crack 
length on selected measures of in-plane constraints were discussed (in this case it's about Q-stress defined by 
O'Dowd and Shih [13,14]), also taking into account the influence of external load expressed by J-integral 
(which may be accepted as a crack driving force). Figure 9 presents the changes in Q-stress values as a 
function of external load, relative to material characteristics and geometry of C(T) specimens. In the range of 
low external loads, it is noticed that C(T) specimens characterized by a high level of in-plane constraints 
(Fig.9). The increase in the relative crack length causes an increase in the value of Q-stresses – the in-plane 
constraints increase (Fig.9a). The increase in external load results in the decrease of the level of in-plane 
constraints expressed by Q-stress. The C(T) specimens characterized by a lower yield point reach a lower 
level of in-plane constraints faster (Fig.9b). The lower level of in-plane constraints is also characterized by 
C(T) specimens made of a strongly hardening material. The increase in the value of the strain hardening 
exponent (and thus the decrease in the material hardening level) causes an increase in the level of in-plane 
constraints expressed by Q-stresses (Fig.9c). 
 
a) b)  c)  

 
 

Fig.9. The influence of the relative crack length (a), yield stress (b) and strain hardening exponent (c) on the 
J-Q trajectories for compact specimens. 

 
 The changes in the value of Q-stresses as a function of J-integral (which is considered to be the crack 
driving force and the control parameter of a singular stress and strain field near the crack tip in elastic-plastic 
materials) shown in Fig.9 can sometimes be quite troublesome, especially when mutual intersection of 
curves is observed for variously described geometry and material characteristics of specimens, especially in 
the range of small external loads (P/P0<1.00). This applies both to the curves Q=f(J) for the determined 
material characteristics and various relative crack lengths a/W (Fig.9a), as well as curves illustrating the 
influence of the yield point 0 (Fig.9b) or the influence of the strain hardening exponent n (Fig.9c), with a 
predetermined relative crack length and other material characteristics. To avoid such problems, according to 
the recommendations of O'Dowd and Shih [13, 14], graphs should be drawn showing the changes of Q-stress 
values as a function of decimal logit from the J-integral normalized by the product of crack length a and 
yield point 0 – log(J/(a0)). This approach simplifies the qualitative analysis of numerical results, as well 
as quantitative, facilitating their approximation, especially with the use of third-degree polynomials, as 
shown in [21-23], obtaining a satisfactory convergence of numerical results and their approximation 
(Fig.10). 
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a) 
 

b)  c)  

 
 

Fig.10. The influence of the relative crack length (a), yield stress (b) and strain hardening exponent (c) on the 
Q=f(log(J/(a0)) trajectories for compact specimens. 

 
 The introduction of normalization in the graphical presentation of changes in Q-stress values allows 
to draw the following conclusions. The longer the crack, the smaller the Q-stress value at the same 
normalized external load, expressed with the help of the J-integral as an argument calculated as log(J/(a0)) 
– Fig.10a. The shorter the crack, the Q=f(log(J/(a0))) curves are arranged lower, with the same material 
characteristics (Fig.10a). It should be noted that the Q-stress level is independent of the relative crack length 
in the range of very low external loads (P/P0=0.50). In the case of the impact of the yield point on the 
distribution of Q=f(log(J/(a0))) curves, it should be noted that the greater the yield point, the lower location 
of the Q=f(log(J/(a0))) curves (Fig.10b), however with increase in external load (P/P0>0.75), no influence 
of normalized external load on Q-stress level (Fig.10b) is observed. In the range of small external loads 
(P/P0<0.75), higher Q-stress values are observed for specimens characterized by lower yield strength, 
assuming that the assessment is carried out for a normalized external load expressed in the level of J-integral 
(Fig.10b). This means that C(T) specimens described with a material with a low yield strength are 
characterized by a higher level of in-plane constraints (expressed in Q-stresses) in the range of small external 
loads – Fig.10b. The introduction of normalization of the argument for the graphical presentation of Q-stress 
changes in terms of the assessment of the impact of the strain hardening exponent leads to similar 
conclusions (Fig.10c). The higher the level of material hardening, the Q=f(log(J/(a0))) curves are arranged 
higher (Fig.10c). The evident influence of the strain hardening exponent on the Q-stress value as the function 
of the log(J/(a0)) argument is characteristic for external loads meeting the condition P/P01.25. A further 
increase in the external load level allows to state that the distribution of Q=f(log(J/(a0))) curves does not 
depend on the level of material hardening (Fig.10c). 
 
3.2. Large strain assumption 
 
 Performing numerical analysis using the assumption of large strains and displacements leads to 
avoiding singularity in stress distributions, which as we know in real constructions are not infinite  they 
have a certain level [13, 14, 18, 20, 24].  
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a) b)  c)  

 
d) e)  f)  

 
 
Fig.11. The influence of the level of external load on crack opening stress zz for C(T) specimens dominated 

by plane strain (calculations for large strain assumptions): a, b, c – the stress distribution in the 
function normalized distance from crack tip (zz/0=f(r0/J)); d, e, f - the stress distribution in the 
function physical distance from crack tip (zz/0=f(r)). 

 
 Figure 11 shows the effect of external loading on the stress distribution that opens fracture surfaces 
in C(T) specimens, differing in the relative crack length. The normalized level of stress opening the fracture 
surfaces was presented as a function of the normalized position relative to the crack tip, denoted by  (the 
physical distance from the crack tip r was normalized by the quotient of J-integral and yield point 0) – Figs 
11a-c and as a function of the physical location – distance r from the crack tip – Figs 11d-f. The analysis of 
Fig.11 indicates that in the range of the considered external load, the stresses opening the crack surfaces 
reach a maximum at the normalized distance from the crack tip =(12), wherein the change of maximum 
stress values opening the fracture surfaces is small (Figs 11a-c). Thus, it is possible to speak of an almost 
constant value of the maximum stresses opening the fracture surfaces, whose normalized position  in the 
considered range of external loads is also almost unchanged (Figs 11a-c). The presented observations are 
confirmed by the analysis of the second part of Fig.11 - Figs 11d-f. It turns out that for the considered range 
of external loads, the level of maximum stresses opening the fracture surfaces remains almost constant (Figs 
11d-f). The influence of external load is important for the analysis of the physical location of the maximum 
stress opening the fracture surfaces – the higher the level of external load, the farthest occur from the crack 
tip the maximum opening crack stress (Figs 11d-f). 
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 Summing up, it should be noted that the stresses opening the crack surface for the considered range 
of external loads reach a maximum that is almost independent of the external load – along with the increase 
in external load only the physical position of this maximum denoted by r is changed (Figs 11d-f and Fig.12), 
which after normalization by the quotient of the J-integral and the yield point 0 (which can be written as 
=r0/J) is also independent of the external load. The graphical distribution of the stress opening the 
fracture surfaces for the entire C(T) specimens is presented in Fig.12, along with the enlargement of the areas 
located close to the crack tip. 
 
a)  b)  

c) d)  

e) f)  

 
 

Fig.12. The distribution of the maximum crack opening stress zz for C(T) specimens dominated by plane 
strain (calculations for large strain assumptions) for material characterized by n=10, 0=500MPa, 
E=206GPa, =0.3: a, b – the zz stress distribution for C(T) specimen characterized by a/W=0.05, for 
P/P0={1.00, 1.31} respectively; c, d – the zz stress distribution for C(T) specimen characterized by 
a/W=0.20, for P/P0={1.00, 1.31} respectively; e, f – the zz stress distribution for C(T) specimen 
characterized by a/W=0.70, for P/P0={1.00, 1.22} respectively. 

 
 Another numerically considered parameter is the effective stresses determined according to the 
Huber-Misses-Hencky hypothesis – Fig.13. The analysis of the results showed that as the crack tip moves 
closer the level of effective stress increases. Considering the changes of effective stresses in the function of a 
normalized position relative to the crack tip (Figs 13a-c), it is noticeable that there is no impact of the 
external load on the distribution of effective stresses in the load range P/P0=(0.751.31) in the range of 
normalized distances =(05) – Figs 13a-c. However, when assessing the level of effective stresses in 
physical coordinates – the physical distance from the crack tip denoted as r – it should be noted that the 
value of effective stresses increases with the increase of the external load (Figs 13d-f), assuming that it is 
measured in the same physical location near the crack tip. 
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a) 
 

b)  c)  

 
 
d) 
 

 
e)  

 
f)  

 
 

Fig.13. The influence of the level of external load on effective stress eff for C(T) specimens dominated by 
plane strain (calculations for large strain assumptions):  a, b, c – the stress distribution in the function 
normalized distance from crack tip (eff/0=f(r0/J)); d, e, f - the stress distribution in the function 
physical distance from crack tip (eff/0=f(r)). 

 
 The diagrams presented in Figs 13d-f should be analyzed along with the distributions of plastic 
zones shown in Fig.14. As can be seen in the diagrams presented in Figs 13d-f, starting with the crack 
tip, as the distance from it increases, the level of effective stress drops asymptotically to the value of 
eff/0=1.00, after which the character of the changes undergoes transformation (Figs 13d-f). The point 
at which the effective stress eff are less than yield stress, is the end point of the plastic zone which rises 
from the crack tip. In the analyzed geometry, the area in which the effective stresses calculated 
according to the Huber-Misses-Hencky hypothesis is equal to or greater than the yield point was 
accepted as plasticized. Thus, the last point on the graph can be treated as the radius of the plastic zone, 
denoted in the literature as rp, which can be used to propose a new fracture criterion in order to estimate 
the actual fracture toughness, which was shown in [37]. 
 
 
 
 
 

0 2 4 6 8 10
=r0/J

0

0.5

1

1.5

2

2.5

 e
ff/


0

C(T) plane strain   W=40mm  a/W=0.05
0=500MPa   n=10   E=206GPa   =0.3

P/P0=0.53

P/P0=0.75

P/P0=1.02

P/P0=1.25

P/P0=1.31

0 2 4 6 8 10
=r0/J

0

0.5

1

1.5

2

2.5

 e
ff/


0

C(T) plane strain   W=40mm  a/W=0.20
0=500MPa   n=10   E=206GPa   =0.3

P/P0=0.53

P/P0=0.75

P/P0=1.02

P/P0=1.18

P/P0=1.31

0 4 8 12
=r0/J

0

0.5

1

1.5

2

2.5

 e
ff/


0

C(T) plane strain   W=40mm  a/W=0.70
0=500MPa   n=10   E=206GPa   =0.3

P/P0=0.49

P/P0=0.75

P/P0=1.01

P/P0=1.11

P/P0=1.22

0 0.4 0.8 1.2 1.6 2
r [mm] (for =0)

0

0.5

1

1.5

2

2.5

 e
ff/
 0

C(T) plane strain   W=40mm  a/W=0.05
0=500MPa   n=10   E=206GPa   =0.3

P/P0=0.53

P/P0=0.75

P/P0=1.02

P/P0=1.25

P/P0=1.31

0 0.4 0.8 1.2 1.6 2
r [mm] (for =0)

0

0.5

1

1.5

2

2.5

 e
ff/
 0

C(T) plane strain   W=40mm  a/W=0.20
0=500MPa   n=10   E=206GPa   =0.3

P/P0=0.53

P/P0=0.75

P/P0=1.02

P/P0=1.18

P/P0=1.31

0 0.4 0.8 1.2 1.6 2
r [mm] (for =0)

0

0.5

1

1.5

2

2.5

 e
ff/
 0

C(T) plane strain   W=40mm  a/W=0.70
0=500MPa   n=10   E=206GPa   =0.3

P/P0=0.49

P/P0=0.75

P/P0=1.01

P/P0=1.11

P/P0=1.22



The characterization of the stress fields near a crack tip ... 565 

a) b)  c)  

  

d) e)  f)  

 
g) h)  i)  

 
 

Fig.14. The influence of the level of external load on the shape and size of plastic zone for C(T) specimens 
dominated by plane strain (calculations for small strain assumptions) for material characterized by 
n=10, 0=500MPa, E=206GPa, =0.3: a, b, c – the plastic zones for C(T) specimen characterized by 
a/W=0.05, for P/P0={1.00, 1.25, 1.35} respectively; d, e, f – the plastic zones for C(T) specimen 
characterized by a/W=0.20, for P/P0={1.00, 1.15, 1.25} respectively; g, h, I – the plastic zones for 
C(T) specimen characterized by a/W=0.70 for P/P0={1.00, 1.11, 1.22} respectively. 

 
 Increasing external load in a natural way causes the growth of the plastic zone near the crack tip 
(Fig.14), as well as the increase of accumulated plastic strain (Fig.15). Figure 15 presents the distributions of 
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accumulated plastic strain aps in the function of the real distance from the crack tip r – aps=f(r) – Figs 15d-f. 
The influence of external load can be lost, presenting the same distributions as a function of the normalized 
distance from the crack tip denoted by  – aps=f(r0/J). As the crack tip moves closer, the level of 
accumulated plastic strain increases, going to infinity. 
 
a) b)  c)  

 
d) e)  f)  

 
 
Fig.15. The influence of the level of external load on accumulated plastic strain aps for C(T) specimens 

dominated by plane strain (calculations for large strain assumptions): a, b, c – the strain distribution 
in the function normalized distance from crack tip (aps=f(r0/J)); d, e, f – the stress distribution in 
the function physical distance from crack tip (aps=f(r)). 

 
 Figure 16 presents changes in mean stresses normalized by the yield point (m/0) as a function of 
the normalized distance from the crack tip (Figs 16a-c) and the physical distance from the crack tip (Figs 
16d-f). The numerical results presented indicate that the mean stresses increase with the increase of the 
external load (Fig.16), and their distribution presented as a function of the normalized position from the 
crack tip indicates the occurrence of the maximum average stress in the distance =(12) – Figs 16a-c, 
depending on the relative length of the crack and the material characteristics expressed by the yield point and 
the strain hardening exponent. It should be noted that the position of the maximum of the mean stresses 
considered as a function of the normalized distance from the crack tip (denoted by ) decreases as the 
external load increases, aiming for a steady value (Figs 16a-c), however the physical distance of this 
maximum of mean stresses increases as the external load increases (Figs 16d-f) – the physical maximum of 
the mean stresses moves away from the crack tip together with the increasing plastic zone, which is the result 
of the increasing external load. Analysis of the parameter m/0 may be quite significant, due to the 
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possibility of using it in the process of estimating stresses Q [13, 14] – that parameter can be adapted to one 
of many fracture criteria in which the maximum crack opening stress were used [18], in order to take into 
account in the analysis the level of the stress triaxiality near the crack tip in elastic-plastic materials. 
 
a) b)  c)  

 
d) e)  f)  

 
 
Fig.16. The influence of the level of external load on normal stress m for C(T) specimens dominated by 

plane strain (calculations for large strain assumptions):  a, b, c – the strain distribution in the function 

normalized distance from crack tip (m/0=f(r0/J)); d, e, f - the stress distribution in the function 

physical distance from crack tip (m/0=f(r)). 
 
 From the point of view of assessing the real fracture toughness, as well as the level of geometric 
constraints (which are restrictions (i.e. limits) that the material of the loaded structural element puts on 
developing plastic deformations), it may be interesting to analyze the changes in the level of Maximum 

Crack Opening Stress (MCOS), denoted by o=22_max/0 (Fig.17) and their normalized position relative to 

the crack tip, denoted by o=x22_max0/J (Fig.18). 
 Figure 17 shows the changes in the MCOS as a function of the increasing external load expressed 
by the J-integral. As shown earlier in Figure 1b, the level of MCOS increases with the increasing external 
load (in the range P/P0={02}, and then reaches the saturation state (Fig.17). The weak influence of the 
crack length on the level of MCOS is observed, especially after reaching the saturation state (Fig.17a). The 
same conclusions may apply to the normalized position of the MCOS near the crack tip (Fig.18a). Figure 
17b presents a very pronounced effect of the yield point on the level of MCOS. The smaller the yield 
point, the greater the values of the MCOS. In the range of small loads, the slight influence of the yield 
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point applies to the normalized position of the MCOS (Fig.18b). The MCOS and their normalized position 
near the crack tip are clearly influenced by the degree of material hardening (Fig.17c and Fig.8c 
respectively) – the stronger material, the greater value of the MCOS and the smaller the value of their 
normalized position relative to the crack tip. Tables 1 and 2 present the numerically estimated values of 
the maximum stresses opening the fracture surfaces (marked as o=22_max/0) with their normalized 
position relative to the crack tip (denoted as 0=x22_max0/J) – these results represent fixed values visible 
on the o=f(J) and 0=f(J) graphs, respectively. 
 
a) 
 

b)  
 

c)  
 

 
 

Fig.17. The influence of the relative crack length (a), yield stress (b) and strain hardening exponent (c) on the 
maximum crack opening stress (o=22_max/0) for compact specimens – results for the whole 
spectrum of external load. 

 
a) 
 

b)  
 

c)  
 

 
 

Fig.18. The influence of the relative crack length (a), yield stress (b) and strain hardening exponent (c) on the 
normalized position from the crack tip of the maximum crack opening stress (o=x22_max0/J) for 
compact specimens – results for the whole spectrum of external load. 
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Table 1.  Numerically estimated values of maximum stress opening crack surfaces o=22_max/0 for the state 
of saturation of curves o=o(J) for C(T) specimens dominated by the plane strain state. 

 
0=315MPa   0/E=0.00153 0=500MPa   0/E=0.00243 

n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70
3.36 8.759164 8.875839 8.957196 9.070496 3.36 7.527109 7.771978 7.878552 8.08214 

5 5.637336 5.761491 5.866615 5.834185 5 5.149182 5.282861 5.366404 5.231959
10 3.805455 3.950204 4.045443 3.976293 10 3.657894 3.811541 3.87109 3.843521
20 3.219771 3.378165 3.441704 3.411825 20 3.189682 3.327133 3.364317 3.356592

0=1000MPa   0/E=0.00485 0=1500MPa   0/E=0.00728 
n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70

3.36 6.261961 6.409084 6.501177 6.573641 3.36 5.625672 5.731875 5.712908 5.737346
5 4.607296 4.677846 4.740952 4.597552 5 4.332705 4.380931 4.354168 4.317984
10 3.513294 3.61835 3.65014 3.617777 10 3.444042 3.510194 3.5101 3.480833
20 3.182751 3.25234 3.292362 3.27191 20 3.147594 3.216597 3.222995 3.214645

 
Table 2. Numerically estimated values of normalized position near the crack tip (denoted by 0) of the 

maximum stress opening crack surfaces o=22_max/0 for the state of saturation of curves 0=0(J) 
for C(T) specimens dominated by the plane strain state. 

 
0=315MPa   0/E=0.00153 0=500MPa   0/E=0.00243 

n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70
3.36 0.209949 0.170728 0.189151 0.205076 3.36 0.261104 0.199359 0.198109 0.22838 

5 0.499667 0.393716 0.43742 0.451438 5 0.641399 0.475459 0.460588 0.547445
10 1.449834 1.041845 0.93387 1.058766 10 1.464255 1.057733 0.942647 1.037846
20 2.120104 1.531334 1.294685 1.410907 20 2.155575 1.447721 1.33659 1.389189

0=1000MPa   0/E=0.00485 0=1500MPa   0/E=0.00728 
n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70

3.36 0.345377 0.262019 0.2607 0.288837 3.36 0.402368 0.309705 0.308995 0.325056
5 0.692499 0.582286 0.544415 0.638787 5 0.749601 0.624809 0.650828 0.645949
10 1.47332 1.118237 1.07271 1.116932 10 1.381901 1.226061 1.236787 1.225757
20 2.288411 1.578627 1.4857 1.439393 20 2.074317 1.688819 1.761894 1.592888

 
4. Approximation of the selected numerical results 
 
 The analysis presented in the paper, in addition to the characteristics of mechanical fields, provides 
information on parameters that are commonly considered as the measurement of in-plane constraints, which 
are the answer of the materials for increasing plastic deformation, which results from the growing external 
load. Among these measures, the Q-stress defined by O'Dowd and the maximum stresses opening the crack 
surfaces o=22_max/0 and their normalized position from the crack tip 0=x22_max0/J were highlighted in the 
paper. These quantities, as already mentioned before, can be used in predicting the real fracture toughness, 
using properly defined fracture criterion [18, 19, 40]. As shown above, the estimation of parameters of 
geometrical in-plane constraints requires the proper elaboration of the numerical model, which guarantees 
the convergence of the solution and the analysis of the obtained numerical results (post-processing). 
Therefore, it is proposed to catalog the obtained numerical solutions and to approximate selected ones, which 
for many other basic geometries shown in the FITNET [25] procedures was presented in [21-24]. 
 Based on the previously developed method of analysis, obtained during numerical calculations of the 
Q-stress changes as the function of log(J/(a0)) (in other words Q=f(log(J/(a0))) curves), are described by 
the third-order polynomial – formula (4.1) 
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where A1, A2, A3 and A4 are approximation factors. For the models of C(T) specimens tested in the study – 
differing in material characteristics (different strain hardening exponent n, different yield point 0) and 
relative crack length a/W, the determination coefficient R2 obtained during approximation was generally 
greater than 0.95. Example approximation results are presented in Tab.3. In Fig.19a, the convergence 
between selected numerical solutions and the approximation results for two C(T) specimens containing short 
cracks (a/W=0.20) is shown graphically, however, made very strongly and very weakly hardening material 
(the value of the strain hardening exponent is n=3.36 and n=20, respectively). 

 
Table 3. Approximation coefficients of the formula (4.1), necessary to estimate the Q-stresses for C(T) 

specimens dominated by the plane strain state (selected approximation results). 
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Fig.19. a) Comparison of the numerical results and their approximation for two selected Q=f(J) curves for 
C(T) specimens; b) Representation of the numerical results and approximation surface for maximum 
crack opening stress for the saturation state. 
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 Figure 19b presents the representation of all the results obtained during numerical calculations in the 
range of estimating the value of the maximum stresses opening the fracture surfaces, denoted by 
o=22_max/0. During the analysis, four such graphs o=f(0/E, n) were drawn, separately for each of the 
relative crack length (these charts are not attached to the paper), after which a summary graph for all 
considered cases was drawn up, due to the low impact of the relative crack length a/W on the saturation 
value of the maximum stress opening the fracture surfaces indicated by o (Fig.17a). The analysis carried out 
by the author shows that the relative crack length a/W has a very small effect on the level of maximum crack 
opening stress o. Referring values of o for individual relative crack lengths from the range a/W={0.05, 
0.20, 0.50} up to o values characteristic for a/W=0.70 (for this relative crack length the highest value of 
maximum crack opening stress is observed), it can be stated, that for subsequent relative crack lengths from 
said set, the percent differences are {3.06%, 1.18%, 1.16%}, respectively. The biggest differences for the 
same material characteristics are observed for specimens characterized by very short cracks. For selected 
cases, these differences are around 5%, and for some, up to 7%. The resulting curvilinear surfaces – both for 
groups of C(T) specimens characterized by the same relative crack length as well as for the whole specimens 
population, are described by Eq.(4.2) 
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  (4.2) 

 
where A1, A2, ..., A10 are approximation factors that are summarized in Tab.2. The determination coefficient 
R2 of Eq.(4.2) to the estimated numerical values is generally greater than 0.98. 

 
Table 4.  Approximation coefficients of the formula (4.2), necessary to estimate the maximum opening crack 

stress o for C(T) specimens dominated by the plane strain state for the saturation state of the  
o =f(J) curves. 

 
a/W A1 A2 A3 A4 A5 A6 

0.05 3.081 8.166 -239.434 53.386 94186 -2924 

0.20 3.112 10.175 -173.037 32.329 55065 -2314 

0.50 3.270 10.960 -292.857 28.805 82728 -2245 

0.70 3.265 11.535 -306.195 16.083 84832 -2219 

all a/W 3.182 10.209 -252.881 32.651 79203 -2426 

a/W A7 A8 A9 A10 R2 

0.05 -12.749 -8503900 263870 -3196 0.982 

0.20 32.490 -4650100 207479 -3485 0.986 

0.50 34.855 -6518500 175384 -2982 0.987 

0.70 81.943 -6725700 199786 -3933 0.989 

all a/W 34.135 -6599500 211630 -3399 0.984 
 
 The previous paragraph of the paper also shows the influence of material characteristics and the 
relative crack length on the system of 0=f(J) curves. The 0=f(J) curves also strive to reach the set value as 
the external load increases. The fixed value 0 – the fixed value of the normalized position of the maximum 
crack opening stresses – also found application in the search for real fracture toughness – this parameter was 
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used in several fracture criteria [18, 40]. For this reason, with a set of numerical results (Tab.2), 
approximation formulas can be given, allowing to estimate the value of the parameter 0 depending on the 
relative crack length a/W, the strain hardening exponent n, for a given yield point 0 
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where by AI, AII and AIII the approximation factors were denoted, which are given for data with a given yield 
point in Tab.5. The determination coefficient R2 for subsequent data sets was greater than 0.99. 
 
Table 5.  Approximation coefficients of the formula (4.3), necessary to estimate the normalized position near 

the crack tip (denoted as 0) of the maximum opening crack stress for C(T) specimens dominated 
by the plane strain state for the saturation state of the  0=f(J) curves. 

 
0 [MPa] 315 500 1000 1500 

0/E 0.00153 0.00243 0.00485 0.00728 

AI 0.4993 0.4595 1.6257 1.6663 

AII -21.9916 -19.6640 -3.5852 -3.4064 

AIII -0.00665 -0.00709 -0.00031 -0.00015 

R2 0.992 0.994 0.991 0.995 

 
5. Summary 
 
 Using the finite element method, the paper presented a comprehensive analysis of the in-plane 
constraints for the compact specimen. The level of the selected parameters of the in-plane constraints – like 
Q-stress and maximum crack opening stress and their position near the crack tip – was evaluated. A 
discussion was held about the influence of the material properties (yield stress, strain hardening exponent in 
the R-O law) and the relative crack length on the presented parameters of geometric constraints. The selected 
results for the Q-stress and maximum crack opening stress were approximated by mathematical formulas. 
The results of numerical calculations with the given approximation formulas presented in the paper may be 
useful in solving various engineering problems, which need to calculate he stress distribution near the crack 
tip, the real fracture toughness, or graph the J-R curves. 
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Nomenclature 
 
 ASTM  – American Society Testing Materials 
 A2  – A2 parameter, described also as A2 amplitude defined by Yang et al. 
 a – crack length 
 a/W  – relative crack length 
 B  – specimen thickness 
 BS – British Standard 
 b  – length of the uncracked ligament (b=W-a) 
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 C(T) – compact specimen  
 CC(T) – center cracked plate in tension 
 E  – Young’s modulus 
 EPRI  – Electric Power Research Institute 
 ESIS  – European Structural Integrity Society 
 FAD – Failure Assessment Diagram 
 FE – Finite Element 
 FEM – Finite Element Method 
 FITNET – European FITness-for-service NETwork 
 HMH – Huber-Misses-Hencky hypothesis  
 HRR – Hutchinson-Rice-Rosengren 
 J – J-integral 
 J-R  – J-R curves (graphical presentation of the change of the J-integral as a function of the crack 

growth length da)  
 MCOS – Maximum Crack Opening Stress 
 n – strain hardening exponent in the Ramberg-Osgood relationship 
 P – external load 
 P0 – limit load 
 Q  – Q-stress parameter defined by O’Dowd and Shih, the measure of the in-plane constraints for 

elastic-plastic materials 
 R-O – Ramberg - Osgood 
 r – physical distance from the crack tip, polar coordinate 
 SEN(B) – single edge notched cracked plate in bending 
 SEN(T) – single edge notched cracked plate in tension 
 vLL – load line displacement 
 W  – specimen width 
 x22_max – physical location of the maximum stress opening the crack surfaces 
  – constant in the Ramberg-Osgood relationship 
  – strain on stress-strain curve 
 0 – strain corresponding to the yield stress (0=0/E) 
 aps – accumulated plastic strain 
 m – strain corresponding to the ultimate tensile strength 
  – Poisson’s ratio 

 –  polar coordinate 
   – stress on stress-strain curve 
 0 – yield stress 
 eff – effective stresses calculated according to the HMH hypothesis 
 ij – stress tensor 
 22_max – maximum of the crack opening stress  
 m – normal stresses 
 xx, yy, zz – normal components of the stress tensor 
  – normalized distance from the crack tip, calculated as =r·J/0 

 0 – normalized positon near the crack tip of the MCOS for saturate state 
 0 – normalized maximum opening crack stress for saturate state 
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