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In this paper, we present an initial value technique for solving self-adjoint singularly perturbed linear
boundary value problems. The original problem is reduced to its normal form and the reduced problem is
converted to first order initial value problems. This replacement is significant from the computational point of
view. The classical fourth order Runge-Kutta method is used to solve these initial value problems. This approach
to solve singularly perturbed boundary-value problems is numerically very appealing. To demonstrate the
applicability of this method, we have applied it on several linear examples with left-end boundary layer and right-
end layer. From the numerical results, the method seems accurate and solutions to problems with extremely thin
boundary layers are obtained.
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1. Introduction

The numerical treatment of singular perturbations is far from trivial because of the boundary layer
behavior. In recent decades, this has been a field of increasing interest to applied mathematicians and
numerical analysts in view of the challenges the problems there pose to researchers. In this section, we
present a brief survey of the literature dealing with the numerical treatment of singular perturbation
problems.

For a detailed theory and analytical discussion on singular perturbation problems one may refer to
the books and high level monographs: O’ Malley [1], Nayfeh [2], Kevorkian and Cole [3], Bender and
Orszag [4], Van Dyke [5], and Wasow [6].

For a detailed numerical and asymptotic discussion on singular perturbation problems one may refer to
the books and high level monographs: Hemker [7], Hemker and Miller [8], Doolan et al. [9], Morton [10].

* To whom correspondence should be addressed
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In general, a numerical solution of a boundary value problem will be more difficult than a numerical
solution of the corresponding initial-value problems. Hence, we always prefer to convert the second-order
problems into first order problems. Gasparo and Macconi [11-14] developed initial value methods for
singularly perturbed two-point boundary value problems. Parallel initial value algorithms are developed for
singularly perturbed boundary value problems by them.

Reddy and Chakravarthy [15] proposed a method of reduction of order for solving singularly
perturbed two point boundary value problems. The solution of the given two-point boundary value problem
is numerically computed by solving two suitable initial-value problems easily deduced from the original
problem. The method is very easy to implement and is tested on several linear, non-linear problems. They
[16] proposed an initial value technique for solving singularly perturbed two point boundary value problems.

Mishra et al. [17] studied an initial value technique for self adjoint singular perturbation boundary
value problems. Natesan and Ramanujam [18] studied initial-value technique for singularly perturbed
boundary-value problems for second-order ordinary differential equations arising in chemical reactor theory.
An initial-value technique is presented for solving singularly perturbed two-point boundary-value problems
for linear and semi linear second-order ordinary differential equations arising in chemical reactor theory. The
required approximate solution is obtained by combining solutions of two terminal-value problems and one
initial-value problem which are obtained from the original boundary-value problem through asymptotic
expansion procedures. Error estimates for approximate solutions are obtained. The initial-value technique
has been applied to solve various singularly perturbed boundary value problems for second-order ordinary
differential equations subject to Dirichlet-type boundary conditions.

Here, we present an initial value technique based on in [17] for solving self-adjoint singularly
perturbed linear boundary value problems. The original problem is reduced to its normal form and the
reduced problem is converted to first order initial value problems. This replacement is significant from the
computational point of view. The classical fourth order Runge-Kutta method is used to solve these initial
value problems. This approach to solve singularly perturbed boundary-value problems is numerically very
appealing. To demonstrate the applicability of this method, we have applied it on several linear examples
with left-end boundary layer and right-end layer. From the numerical results, the method seems accurate and
solutions to problems with extremely thin boundary layers are obtained.

2. Statement of the problem

We consider the following class of a self adjoint singularly perturbed two-point boundary value
problem

Ly==g(a(x)y (x)) +b(x)y(x)=f(x) where0<x<1
subject to y(0)=a, y(1)=p

where o, BeR, € is a small positive parameter and a(x),b(x) and f(x) are smooth functions and satisfy
a(x)Za* >0, a'(x)ZO, b(x)Zb* >0.
Under these conditions the operator L admits the maximum principle.

2.1. Description of the method
To describe the method, we consider the singularly perturbed two-point boundary —value problem

—s(a(x)y'(x))'+b(x)y(x)=f(x) for0<x<I, (2.1

with boundary conditions
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(2.2a)
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y(0)=a,
(2.2b)

whereg is a small positive parameter (0 <& < /), o, are given constants, and the functions a(x),b(x)

and f(x) are assumed to be sufficiently smooth in [0, 1].
We also suppose that a(x),b(x) satisfies

a(x)Za*>0, a'(x)ZO, b(x)zb*>0.

Equation (2.1) can be rewritten as
~ea(x)y (x)~ea (x)y () +b(x) y(x)= [ (@),

T PR C) RN A €)
d (x) a(x)y( ) sa(x)y( ) ga(x)’

(2.3)

where P(x) = 6;((;;)) ,
ooy
and R(x) =% .

In general, finding the numerical solution of a second-order boundary value problem with yv term is
more difficult as compared to a second-order boundary value problem without y' term. Therefore it is better

to convert the second-order boundary-value problem without y' term to its normal form.

Now we use the transformation
y(x)zU(x)V(x), 2.4)

to reduce Eq.(2.1) to its normal form.
Differentiating Eq.(2.4), we get

y (¥)=U@V X)+V(x)U (x).

Again differentiating above equation, we get
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y" (x) = U(x)V” (x) +V (x)U' (x) + V(x)U" (x) +V (x)U' (x) ,
1.e., y" (x) = U(x)V” (x) +21 (x)U' (x) + V(x)U" (x) ,
substituting these in Eq.(2.3), we get
[U(x)v"(x)uv'(x)u'(x)+V(x)U"(x)]+p(x)[U(x)V'X)w(x)u'(x)]+
| +HO(X)[U (x)V (x) =R(x),
h U(x)V" (x)+[ U (x)+ P(x)U' (x) +Q(x)U (x) [ (x) +
[ 2V (XU (x)+ P(x)U (x)V'(x) | = R(),
" U”(x)+P(x)U'(x)+Q(x)U(x) B
V (x)+ U(x) V(x) =
o | RG)-[ 27 (U () + P(xr)U ()Y ()]
- U(x) ’
ie., V"(x)+A(x)V(x)=H(x) (2.5)
where
i) >+P<x>g‘(<xx)>+Q< () s
ond H(x) = R(x)=[2V (x)U (x)+P(x)U(x)V' (x)] ‘ 2.5b)
U(x)
we choose
U(x)=exp[—é]£P(s)dsJ, 2.6)

differentiating Eq.(2.6), we get

U'( =—exp{ élp dsJ_exp[——jP dsJ

_ exp{—z '([P(s)dsj[%(x)}.

Again differentiating Eq.(2.6a) with respect to x, we get

d
dx

g
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2 x '
U'(x)= [@ Jexp[—égp(s)d_s} _[ng)}xp[_éop(s)ds} :
Equation (2.5a) becomes
_o(x) P ) [P@)
A(x)=0(x)- T
Equation (2.5b) becomes
H(x)zM 2exp —i]C.P(s)ds [L(X)}—P(x)exp —i]iP(s)ds =
U(x) 2 ) 2 2 "
= R(x) - 4 (x) —Z[P(x)}exp —i]ﬁP(s)ds + P(x)exp —ijiP(s)ds
U(x) U(x) 2 29 24 ’
ic. nw-t R
U(x) exp(—ZJ.OP(S)dS)
H(x)zR(x)exp[éjP(s)dsJ. 2.7)
0
We have
v(0)= % =y (say),
V(I)=M=8 (say) xe(0,1) and 7,8¢R
U(l) ’ o
On multiplying Eq.(2.5) by —¢, we get
LIV(x) =—¢V (x) —sA(x)V(x) =-eH(x),
ie., LV (x)=-eV (x)+W(x)V(x)= Z(x) (2.8)
with boundary conditions
V(O)zy , V(])=6 2.9
where
W(x)z—sA(x), Z(x):—sH(x), W(x)ZW>0.
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In order to obtain the solution V' (x) of the problem, let Vz(x) be the solution of the reduced
problem obtained by putting € =0 in Eq.(2.8) and by neglecting both boundary conditions.

We have
W(x)VR (x)zZ(x)xf[O, 1] (2.10)
where
Ve (x): ;(();)) xel0,1] (2.10a)

The asymptotic solution of Eq.(2.8) with the conditions (2.9) is given by

V(x)= Ve(x)+ (v—VR(O))(W<0)/W<x))u4expu—f —W(s)/edsﬁ +

0

[c.f. 3]
1
+{(Y—VR(1))(W<1)/W<x>)”" exp{— | \/—W(swsds]}
where V;(x) and ¥, (x) are defined on [0, 1] by

V,(x)zexp[—j —W(s)/sds}, @.11)
0
1

V,(x)= exp{—L/—W(s)/adsJ. (2.12)

Differentiating Eq.(2.11), we get

Vj(x) = %{exp[—I\/—W(s) / sds}}
0

1.e.,

V;(x)zexp[—j —W(s)/sds}%[—'[ —W(s)/sdsJ=
0

0

- exp[—;'i W (s)/ sdsJ{—\/W (%j} :

\/EVI (x) + exp{—J‘\/—W(s) / sds}/—W(x) /e =0,
0

using Eq.(2.11), we get



112 P.Padmaja, P.Aparna and R.S.R.Gorla

VeV, (x)+V, (X)W (x) /e =0 x [0, 1]

Now differentiating Eq.(2.12), we get

V;(x):%{exp[_j,/i_wm/gds} [ desJ [ NWCJSJ
exp[—j. W(s)/sdsj(\/ W(S)/S(TD

1
Jevy (x) - exp[— j NEZTOY sds}/—W(s) /e=0

using Eq.(2.12), we get
Ve (x (X)W (x)/e=0xe[0,1],
Vy(0)=1
i.e., clearly ¥;(x) can be found as the solution of the initial —value problem

VeV, (x)+V, (x)J-W(x) /e =0 x [0, 1], (2.13)
v,(0)=1 (2.14)

and ¥, (x) can be found as the solution of the initial —value problem

VeV (x) =V (X)W (x) /e =0 x € [0, 1], (2.15)
V,(0)=1. (2.16)

Now we write the solution as

V(x)= VR(X)"'{(“{—VR( )W)/ W ()" ¥, (x )}+
Hr=ve (D)@ W) 1y(x)]+ 0o,

We can approximate the solution of the problem (2.8) by combining the function Vj, (x) given by

(2.10a) with the solution of the initial-value problem (2.13)-(2.14) and (2.15)-(2.16).
Hence the solution of Eq.(2.1) is given by

2.17)
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y(x) = U(x)V(x) .

The whole method is extremely simple to implement. To this end, it is enough to use suitable codes
for initial-value problems taking into account that the solution of Eqs (2.13) and (2.15) may change character
in the interval of integration. In fact, these problems are generally non-stiff near the starting point, but we
must expect stiffness as the integration goes to the end of the interval.

So, the numerical solution of these problems requires a scheme automatically determining whether
the problem can be solved more efficiently using a class of methods designed for non-stiff problems or a
class of methods suitable for stiff problem.

3. Numerical examples

To demonstrate the applicability of the methods, we applied the present method to three singular
perturbation problems. These examples have been chosen because either analytic or approximate solutions
are available for comparison.

Examples 3.1: Consider the following equation
—8(y'(x)) +y(x) = —cos” (nx) - 2en’cos(2mx) , (3.1)

i-th boundary conditions

y(0)=0,
3.2)
y(1)=0,
which has the exact solution
—I(1-x) —X
exp( j+ exp(ﬂ
y(x) { . ; ve]
=12
[1+exp[\/gﬂ cos” (1)
now Eq.(2.17) becomes
—gy (x)+y(x)=—cos’ (nx) - 2en’cos(2nx), (3.3)
2
V() 2 008 () + 2n’cos(2my) (3.4)
g €

by comparing Eqgs (2.1) and (2.3), we have
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f(x) =—cos” (mx) - 2en’cos(2mx) ,

R =
(+) 8 ,
also we have
-1 1 1
A(x)=—-—=(0)——(0
(W="-10)-Lw,
-1
Alx)=—
(=",

from Eq.(2.7), we have

H(x)=

€

3 cos’ (nx) — 28n2c0s(2nx) (eo)
= - ,

2 2
e H(x)= cos” (mx)— 2en”cos(2mx) ,

from Eq.(2.6), we have

U(x) = exp{—é]{‘(O)dsJ ,

Equation (3.3) can be written as

2 _ 2 x
cos® (mx) - 2en”cos(2mx) exp[éJ(O)ds}
0

(3.5)

(3.6)

(3.7)
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—eV" (x)+V (x)=—cos’ (nx) - 2en’cos(2mx) (3.9)
with boundary conditions
v(0)=0,
v(n=o0, (3.9)
ase —> 0 Eq.(3.8) becomes
Ve (x) = —cos’ (nx) — 28n2c0s(2nx) , (3.10)
Ve (0)=—~1-2en’ (3.11)
and
Vg (1)=—cos’ (1) - 2en’ cos(2m). (3.12)
Equation (2.8) becomes
-1
W(x)=—-¢l— |,
9-=(3)
W(x)=1 (3.13)
now Equation (2.11) becomes
.
x):exp[—'[ [—jdsj, (3.14)
€
0
differentiating Eq.(3.14), we get
d T 1
Vi(x) = —{exp[ j = J}
AR
d X
0
' T _1 _]
Vi(x)=exp| —|.[| — |ds || —=
1(x) p[ ng ](ﬁ
The first initial-value problem is given by
v =1 7|
Je
with
Vi (0)=1, (3.15)

now Eq.(2.12) becomes



116 P.Padmaja, P.Aparna and R.S.R.Gorla

V,(x)= exp[—j; \/@dsj . (3.16)

The second initial-value problem is given by

=7 7 |

Vy(1)=1 (3.17)

with

Table 1. The maximum absolute errors for example 3.1 fore =1 0%, h=1 073,

X y(x) Exact solution Max. Absolute error
0.0000 0.0000000 0.0000000 0.0000000
0.0010 -0.0953248 -0.0951536 0.0001712
0.0020 -0.1815593 -0.1812333 0.0003260
0.0030 -0.2595668 -0.2591008 0.0004660
0.0040 -0.3301286 -0.3295360 0.0005926
0.0050 -0.3939515 -0.3932444 0.0007071
0.0200 -0.8626122 -0.8610691 0.0015432
0.0400 -0.9690687 -0.9673533 0.0017154
0.0600 -0.9671498 -0.9654697 0.0016801
0.0800 -0.9447580 -0.9431620 0.0015960
0.1000 -0.9141079 -0.9126224 0.0014855
0.2000 -0.6818311 -0.6811789 0.0006523
0.4000 -0.1299758 -0.1313031 0.0013273
0.6000 -0.0500067 -0.0516208 0.0016142
0.8000 -0.5439070 -0.5437495 0.0001575
1.0000 0.0000000 0.0000000 0.0000000

Table 2. The maximum absolute errors for example 3.1 for € =1/ 07, h=1 073,

x y(x) Exact solution Max. Absolute error
0.0000 0.0000000 0.0000000 0.0000000
0.0010 -0.2711214 -0.2710976 0.0000238
0.0020 -0.4687263 -0.4686784 0.0000479
0.0030 -0.6127388 -0.6126685 0.0000703
0.0040 -0.7176820 -0.7175916 0.0000904
0.0050 -0.7941419 -0.7940344 0.0001076
0.0200 -0.9947897 -0.9946126 0.0001771
0.0400 -0.9858406 -0.9856658 0.0001748
0.0600 -0.9681169 -0.9679484 0.0001685
0.0800 -0.9436571 -0.9434975 0.0001596
0.1000 -0.9128163 -0.9126678 0.0001485
0.2000 -0.6812441 -0.6811789 0.0000652
0.4000 -0.1311704 -0.1313031 0.0001327
0.6000 -0.0514594 -0.0516208 0.0001614
0.8000 -0.5437653 -0.5437495 0.0000158
1.0000 0.0000000 0.0000000 0.0000000
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Example 3.2

Consider the following equation
_g(y'(x))y +(1+x)y(x)= _40[X(x2 _ 1) _ 28} ’

with boundary conditions

which has the exact solution
»(x) = 40x(1-x)
from Eq.(3.18) we have
—ev” () + (1 %) y(x) = —40] (+” ~ 1) - 26 |.

This can be rewritten as

comparing Eq.(2.1) and Eq.(2.3), we get
a(x) =1,

b(x)=(1+x),

f(x) =—40[x(x2 —1)—28:| ,

_(]+X)_l(0)_§(0)

also we have  A(x)= 5

(3.18)

(3.19)

(3.20)

(3.21)
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i.e., A(x) )

ie., H(x)= )

from Eq.(2.6) we have

U(x)= exp[—é

S 2
—~
S
~
>y
N—

and

V(D=0
Eq.(3.20) can be written as

—e" (x) + (1+2)V () =40 x(x* = 1)~ 28]
with boundary condition

v (0)=0,

v(1)=0,
ase — 0 Eq.(3.25) becomes

(14 X)Wy () ==40| x(x* 1) - 28,

—40[x(x2 —])—28:|

(I1+x)

V(x)=

b

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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hence
—40(-2
Ve(0)= (1 2 ’
Vg (0)=80¢,
also we have
_—40[ 1(1-1)-2¢]
Vall)= 1+1 ’
Ve (1)=40¢
we have,
W(x)z—s[—(hrx)},
€
W(x) =—(I+x),

hence Eq.(2.11) becomes,

v, (x) = exp[—j (I+x)/¢ ds} .

0

The first initial-value problem is given by
, -1
Vi(x)= (TJ [(1+x)7;(x),
€
Vi(0)=1

now Eq.(2.12) becomes

1
V,(x)= exp[—j (I+x)/8dsJ.

X

The second initial-value problem is given by
| 1
v, (x) =$\/(1+x) V, (x) ,

Vy(1)=1.

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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Table 3. The maximum absolute errors for example 3.2 for € =1/ 0%, h=1 073,

X y(x) Exact solution Max. Absolute error
0.0000 0.0000000 0.0000000 0.0000000
0.0010 0.0399411 0.0399600 0.0000189
0.0020 0.0798040 0.0798400 0.0000360
0.0030 0.1195886 0.1196400 0.0000514
0.0040 0.1592947 0.1593600 0.0000653
0.0050 0.1989221 0.1990000 0.0000779
0.0200 0.7838306 0.7840000 0.0001694
0.0400 1.5358110 1.5360000 0.0001888
0.0600 2.2558120 2.2560000 0.0001881
0.0800 2.9438150 2.9440000 0.0001853
0.1000 3.5998180 3.6000000 0.0001819
0.2000 6.3998330 6.4000000 0.0001669
0.4000 9.5998570 9.6000000 0.0001431
0.6000 9.5998740 9.5999990 0.0001249
0.8000 6.3998890 6.4000000 0.0001111
1.0000 0.0000000 0.0000000 0.0000000

Table 4.The maximum absolute errors for example 3.2 for €=/ 07, h=107".

X y(x) Exact solution Max. Absolute error
0.0000 0.0000000 0.0000000 0.0000000
0.0010 0.0399546 0.0399600 0.0000054
0.0020 0.0798307 0.0798400 0.0000093
0.0030 0.1196278 0.1196400 0.0000122
0.0040 0.1593457 0.1593600 0.0000143
0.0050 0.1989842 0.1990000 0.0000158
0.0200 0.7839805 0.7840000 0.0000196
0.0400 1.5359810 1.5360000 0.0000193
0.0600 2.2559810 2.2560000 0.0000188
0.0800 2.9439820 2.9440000 0.0000186
0.1000 3.5999820 3.6000000 0.0000184
0.2000 6.3999830 6.4000000 0.0000167
0.4000 9.5999860 9.6000000 0.0000143
0.6000 9.5999870 9.5999990 0.0000124
0.8000 6.3999890 6.4000000 0.0000110
1.0000 0.0000000 0.0000000 0.0000000

Examples 3.3

Consider the following singular perturbation problem

—e(y (0))"+ (I +x(1=x))y(x) =[1 + x(1 - x)] +

+[2J§ _x? (J—x)]exp[—%j+[2£ —x(l—x)z]exp(—%) , (3.34)
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having boundary conditions

y(1)=0, (3.35)

which has the exact solution

y(x)= ]+(x_])eXP(—%j—xeXp(_ 1\/—;)

Eq.(3.34) becomes

—gy (x) + (1 +x(] —x))y(x) = [1 +x(1 —x)] +

+ [2& = x)]exp(—%j + [2\5 —x(1- x)z]exp(—%j, (3.36)
ie. y"(x)—w y(x)= Lx=9)]
Y L N

comparing Eqgs (2.1) and (2.3), we have
a(x) =1

b(x) =1+x(1-x)

F(x)=[1+x(1-x)]+[ 2V -’ (]—x)}exp(—%]+ [A/E—x(z—x)z]exp(—%j (3.38)

P(x)z()
Q(x):—[1+x(l—x)]
o [1+x(1—x)}+[2\/g—x2(1—x)}exp(—]\/_;xj+[2\/g—x(]—x)2]exp(—\7gj
R(x)=
also we have
_—[1+x(1—x)] )i 7
A(x)—f—z(o)—zw),

(3.39)
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Eq.(2.7) becomes
1
=R —
(X)eXp[ 5

= R(x)eo

ie., H(x) =R(x)

H(x):

Q'—.k

[1+x(1—x)]+[Zx/g—x2(1—x)]exp(—

X

_xj+[2x/g—x(1—x)2}exp(—

N

XJ’

as Eq.(2.6) becomes

x) exp[ é}[

we have

Eq.(3.36) can be written as

—8V"(x)+(l+x(1—x))V(x) =[1+x(1—x):|+
+[2\/E—x2(]—x)]exp[—1

with boundary conditions

V(0)=0
v(1)=0,

ase — 0 Eq.(3.42) becomes

(1+x(1-x))Vg(x)

+| e - x(1-x)’ Jexp(—i

[1+x1 x)] [ZJ;—xZ(]—x)]exp(—]_x

)

Je

- X

NS

€

j+[2x/5—x(1 —x)z]exp(—%j ;

NS

Js

(3.40)

(3.41)

(3.42)

(3.43)
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. [1+x(f—x)]+[2~@—x2(1—x)}exp(—Hj{z\/é—x(z—x)ﬂexla(_"j

Jx Ve

V()= (I+x(]—x)) (49
hence

Ve (0)= (1+ Zﬁexp{_—]}+ NE), (3.45)

Je
Ve(1)= {1 + 2\ + 24Jeexp {_—Jﬂ , (3.46)
Je

we have,

W(x)= _{M} ’

€

W(x)=1+x(1—x),
Eq.(2.11) leads to

V,(x)= exp[—j\/—(l +x(1-x))/¢e ds} , (3.47)

0

V,(x)= exp[—'([\/—(l+x(1—x))/s dsJL\/%{(l +x(1 —x))j.
The first initial value problem is given by

/i) {0 |

Vi(0)=1. (3.48)
Now Eq.(2.12) becomes

1
V,(x)=exp —I\/—(1+x(1—x))/8dsJ, (3.49)

1
V2' (x) =exp —I\/—(I +x(1- x)) / adsJ[\/((] +x(1- x)) / 8):| .
The second initial-value problem given by

Vz'(x)zﬁVz(x)[ (1+x(1-x))]

with
v,(1)=1 (3.50)
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Table 5. The maximum absolute errors for example 3.3 fore =1 0%, h=107.

X y(x) Exact solution Max. Absolute error
0.0000 0.0000000 0.0000000 0.0000000
0.0010 0.0944957 0.0960674 0.0015717
0.0020 0.1801083 0.1829067 0.0027984
0.0030 0.2576682 0.2614042 0.0037360
0.0040 0.3279287 0.3323613 0.0044325
0.0050 0.3915730 0.3965020 0.0049290
0.0200 0.8640755 0.8673714 0.0032959
0.0400 0.9818980 0.9824170 0.0005190
0.0600 0.9976332 0.9976700 0.0000368
0.0800 0.9996957 0.9996914 0.0000043
0.1000 0.9999614 0.9999591 0.0000023
0.2000 1.0000000 1.0000000 0.0000000
0.4000 1.0000000 1.0000000 0.0000000
0.6000 1.0000000 1.0000000 0.0000000
0.8000 1.0000000 1.0000000 0.0000000
1.0000 0.0000000 0.0000000 0.0000000

Table 6. The maximum absolute errors for example 3.3 fore =1/ 07, h=1 073,

X y(x) Exact solution Max. Absolute error
0.0000 0.0000000 0.0000000 0.0000000
0.0010 0.2705911 0.2718355 0.0012444
0.0020 0.4680499 0.4697770 0.0017271
0.0030 0.6121177 0.6139112 0.0017934
0.0040 0.7172136 0.7188647 0.0016511
0.0050 0.7938672 0.7952881 0.0014209
0.0200 0.9982367 0.9982440 0.0000073
0.0400 0.9999971 0.9999969 0.0000002
0.0600 1.0000000 1.0000000 0.0000000
0.0800 1.0000000 1.0000000 0.0000000
0.1000 1.0000000 1.0000000 0.0000000
0.2000 1.0000000 1.0000000 0.0000000
0.4000 1.0000000 1.0000000 0.0000000
0.6000 1.0000000 1.0000000 0.0000000
0.8000 1.0000000 1.0000000 0.0000000
1.0000 0.0000000 0.0000000 0.0000000

4. Conclusions

In this paper, we have discussed the application of initial-value techniques for some model problems
involving small parameter €. We have first transformed the original problem into the normal form and then
converted it into two initial-value problems. It is a practical method and can be easily implemented on a
computer to solve such problems. Three examples are given to demonstrate the efficiency of the proposed

method. The maximum absolute errors max| y(xi)— ¥;| at different nodal points are tabulated in the tables
i
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for =107 and €=10"". The results further corroborate the applicability of the proposed method. It has
been observed that the present method approximates the exact solution very well.

Nomenclature
¢ —asmall positive parameter

a,f  —real constants
a(x),b(x)and (x) — smooth functions in [0, 1]

o=

—f(x)

( )_ ga(x)
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