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The intricacy in Lekhnitskii’s available single power series solution for stress distribution around hole edge 
for both circular and noncircular holes represented by a hole shape parameter ε is decoupled by introducing a new 
technique. Unknown coefficients in the power series in ε are solved by an iterative technique. Full field stress 
distribution is obtained by following an available method on Fourier solution. The present analytical solution for 
reinforced square hole in an orthotropic infinite plate is derived by completely eliminating stress singularity that 
depends on the concept of stress ratio. The region of validity of the present analytical solution on reinforcement 
area is arrived at based on a comparison with the finite element analysis. The present study will also be useful for 
deriving analytical solution for orthotropic shell with reinforced noncircular holes. 
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1. Introduction 
 
 Composite structures invariably have reinforced holes in aerospace industries. Holes are also 
reinforced during repair. Lekhnitskii [1] obtained the distribution of stresses around unreinforced holes in an 
orthotropic plate for different shape parameter, ε which represents noncircular holes. Following Lekhnitskii 
[1], Rajaiah and Naik [2] obtained stress distribution for a square hole with ε = -1/9 having a corner radius of 
0.2 times hole width in an infinite orthotropic plate and perturbed ε to arrive at an optimum hole in the form 
of a double barrel shape that has uniform stress distribution in tension and compression regions (Appendix 
A). It is well known that due to micro mechanical behavior at the hole edge, strength of the laminate is much 
higher than theoretical prediction. This concept was experimentally proved by Whitney and Nuismer [3], and 
evolved point stress criterion that requires stress distribution ahead of a circular hole. This was analytically 
derived by Konish and Whitney [4]. However, for a highly orthotropic laminate (EL/ET=55) their solution 
becomes invalid. For such cases, Kumar et al. [5], following an inverse approach based on Lekhnitskii’s 
solution, obtained an expected result ahead of the hole by considering the Fourier series approach.  
 In the present work, Lekhnitskii’s solution for a non-circular hole in terms of ε, is suitably 
manipulated and expressed in unknown Fourier coefficients for obtaining full field stress distribution and is 
extended for reinforced square holes. An iterative procedure is followed to determine the unknown 
coefficients. A uniform reinforcement region over the plate surface around a square or noncircular hole 
(defined by ε) obtained by the present analytical expression is confirmed by the finite element analysis.  
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2. Method of approach 
 
 The available Lekhnitskii’s solution for tangential stress distribution around a non-circular hole edge 
in an infinite laminate plate under uniaxial tension is given in terms of ε as 
 

   
 

sin sin

sin sin

cos sin cos cos

cos cos cos4

4

BC l 3 3

BC l 3h 3

4 44 4AD BC n AC dkn 3AD 3

2B p 4 42 4p C n Ak r AC dkn 3AD 3
2 2C LC

 
 
 
    
 
    
 

    
        

.(2.1) 

 
 The contour of square holes and noncircular holes corresponding to ε is given in Appendix A. 
The terms in Eq.(2.1) are depicted in Appendix B. 

 
2.1. σθ/ σ as a sum of each individual term in ε  
 
 In the present study, Lekhnitskii’s solution is expressed in separate trigonometric series with 
orthotropic constants corresponding to each order in ε. As constants A and B are given in terms of ε, σθ /σ is 
expressed in the full power series of ε up to ε7 by substituting A, B, C, D and L in Eq.(2.1) as 
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where, x0, x1, x2….and X0, X1, X2… are cosine series with cosine terms up to cos18θ.  
 For terms independent of ε, x0 is given by  
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and xi as 
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for i = 1, 2, 3, 4, 5, 6 and 7. 
 In a similar way for terms in the denominator X0 and Xi in Eq.(2.2) can be represented by replacing x 
by X in Eq.(2.3) and Eq.(2.4). 
 In other words, σθ /σ can be expressed as 
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 It is possible to obtain σθ /σ as a target expression of i
i

i 0

c

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  as described in Appendix C. Applying 

the standard iterative method, the coefficient of ε, ci can be determined using the following equation. 
 

For   i>0,   

i 1

i j i j
j 0

i
o

x c X

c
X











, (2.6) 

 
ci can be expressed as ni/N0. Thus σθ /σ can be written as 
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 The term n0/N0 which is independent of ε corresponds to the stress distribution around a circular hole 
in an orthotropic plate as Kumar et al. [5-6]  
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{isotropic plate solution} 

(circular hole) 
+ {additional terms in ρ for orthotropic plate} 

(circular hole) 

ρ is the ratio of the distance of a point on the surface from the center of the hole, to the width or radius of the 
hole along the x-axis or y-axis. 

 
2.2. Fourier terms  
 
 The first term in power series in ε is expressed as 
 
  c1 = n1 / N0 = (x1 - N1 n0 / N0) / N0. 

 
 The above expression, being a division of two cosines series, can be written in a Fourier expression 
as given below.  
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 The values of S2j can be found out by using the standard technique for finding the Fourier 
coefficients by iteration as obtained by Krylov [7]. The methodology adopted is given in Appendix D. 
 In a similar way, each term ni/N0 for each power series in ε can be determined. The full field stress 
distribution in an isotropic plate with a square hole can be determined with the inclusion of parameter ρ 
along with the Fourier coefficients in the analytical expression. Using the methodology illustrated in 
Appendix D, the Fourier coefficients and the higher order terms in ρ can been found out and an additional 
term corresponding to stress distribution in an isotropic plate is expressed as 
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where Si are the isotropic coefficients for a square hole with a rounded corner. 
 Stress distribution in an orthotropic plate can be written as a sum of stress distribution in an isotropic 
plate and additional terms due to the orthotropic property. Additional terms found out using the same 
sequence of analytical steps as illustrated in Appendix D, is given below.  
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 The full field stress distribution in an orthotropic plate with a square hole can be written as the sum 
of stress distribution in an orthotropic plate with a circular hole and higher order terms of ρ and ε 
corresponding to isotropic and orthotropic material properties as given below 
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where, Ss are the orthotropic coefficients for a square or a noncircular hole. 

 
2.3.Stress ratio 
 
 The ratio of total thickness of the plate (in a closed region around the hole) including reinforcement 
thickness to virgin plate thickness is defined by the stress ratio. This ratio is derived from the ratio of σθ /σ of 
an unreinforced hole solution to that of reinforced hole. 
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3.1. Unreinforced hole square hole 
 
 Figure 3 shows a very good agreement of the present analytical Eq.(2.12) for the unreinforced square 
hole with Lekhnitskii’s solution. A comparison of stress distribution ahead of the hole with the finite element 
analysis provided in Fig.6 and shows the efficacy of the present solution. It is concluded that present 
analytical equation is validated and can be considered for reinforced holes. 
 
3.2. Reinforced hole 
 
 A comparison of the present analytical result with the finite element analysis given in Fig.4 shows 
convergence on peak stress value at the hole edge for a reinforcement area of 20a x 20a (Fig.1). Initially, for 
a target value of 50% reduction in peak stress on square hole boundary which corresponds to a stress ratio 
given in Eq.(2.13), it is obvious that a total thickness after reinforcement should increase by two times virgin 
thickness. A comparison with the finite element analysis shows a good agreement for reinforced and 
unreinforced square holes in Fig.5 for the type of laminates considered. A comparison of the tangential stress 
distribution obtained from the analytical model and finite element analysis for layup sequence (±456)S along 
different orientations is depicted in Fig.7 and is in good agreement with each other. 
 
3.3. Nonsingular solution for reinforced holes 
 
 It may be noted from Fig.3 that the stress concentration factor for a square hole in a unidirectional 
laminate in an infinite plate under axial load is 4.9. This singularity 4.9 can be brought down to unity if the 
thickness of the laminate around the hole is increased by 4.9 times the virgin thickness. For such a case, the 
present solution for the reinforced hole gives nonsingular solution (Fig.8) as expected. A good agreement 
with numerical result can also be seen.  
 It is well known that the shell solution is the sum of plate solution and curvature effect due to the 
presence of a hole as obtained by Kumar et al. [6]. However, once a hole is reinforced, then the plate 
solution will be close to that of shell. This is due to the reduction in the influence of curvature effect in the 
proximity of the hole. Hence one may conjecture that the solution for an orthotropic shell with a reinforced 
noncircular hole for a given loading becomes that of plate solution with an unreinforced hole!! 
 
4. Conclusion 
 
 The whole field tangential stress distribution in an orthotropic plate with a reinforced non circular 
hole has been analytically obtained for uniaxial tension case following a new methodology. The concept of 
expressing the noncircular hole solution for an orthotropic plate as a sum of the circular hole solution and 
additional terms to represent non circular holes that is governed by ε with isotropic and orthotropic material 
constants has been well established. For the highly orthotropic unidirectional laminate, the finite element 
analysis results for stress distribution around and ahead of a square hole (ε = - 1/9) show a very good 
agreement with the present analytical solution. Similar conclusions have been drawn for the case of (± 45) s 
laminate where the peak stress is close to rounded corners. It has been shown that the analytical solution is 
useful to overcome stress singularity with the presence of the hole by a reinforcement based on the stress 
ratio. 
 
Appendix A 
 
 The contour of the square hole is described by [1] as 
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 By cross multiplying terms in the above equation 
 

  i i i
i i i

i 0 i 0 i 0

x c X
  

  

   
          

   
   .

 

(A.2) 

 
 The above equation can be expressed as 
 

  

i j k
i j k

i 0 j 0 k 0

x c X
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  
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   , (A.3)

 

 

  i j k
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i 0 j 0 k 0

x c X
  



  
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 Substituting j + k = i 
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x c X
 

  
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 Equating coefficients of εi 
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For   i> 0, 
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 Further simplification gives 
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i j i j
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o

x c X

c
X




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


. (A.9) 

 
 Using the above expression in an iterative manner all values of ci can be found out. 
 
Appendix D 
 
 Elaborating Eq.(A.9), the values of ci can be determined from the following set of equations. 
 
  c1 = n1 /N0 = (x1 - N1 n0 /N0)/N0, 
 
  c2 = n2 /N0 = (x2 - (N1n1/ N0 + N2 n0 /N0))/N0. 
 
Similarly, values of ci up to i =20 can be found out. 
 
  c20 = n20/ N0 = (x20 - (N1 n19 / N0 + N2 n18 / N0 + N3 n17 / N0 + N4 n16 / N0 + N5 n15 / N0 + 
  +N6 n14 / N0 + N7 n13 / N0 + N8 n12 / N0 + N9 n11 / N0 + N10 n10 / N0 + N11 n9 / N0 +  
  +N12 n8 / N0 +N13 n7 / N0 + N14 n6 / N0 + N15 n5 / N0 + N16 n4 / N0 + N17 n3 / N0 +  
  +N18 n2 / N0 + N19 n1 / N0 +N20 n0 / N0)) / N0. 
 
ci obtained from the above expressions can be written in the form of ni/N0, where ni and N0  are cosine series 
as illustrated below. 
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 Using a standard technique illustrated by Krylov [7], the above expression can be expressed in the 
Fourier series as 

 

  cos0
2 j

j 1

S
S 2 j

2





  . (A.11) 

 
 Using the standard technique for determining the Fourier coefficients of a function in the above 
form, the coefficients S2j can be found out using the following set of equations  
 

N00 S0 + N02 S2 + N04 S4 + N06 S6 + N08 S8 + N010 S10 + N012 S12 + N014 S14

+ N016 S16 + N018 S18 

 
= ni0, 

N02 S0 + (2 N00 + N04) S2 + (N02 + N06) S4 + (N04 + N08) S6 + (N06 + N010)
S8 + (N08 + N012) S10 + (N010 + N014) S12 + (N012 + N016) S14 + (N014 + 
N018) S16 + N016 S18 + N018 S20 

= ni2. 

 
 A similar set of equations can be written for j up to 8. For j ≥ 9, a recursive relation of the following 
form can be used. 
 

N018 S2j-18 + N016 S2j-16 + N014 S2j-14 + N012 S2j-12 + N010 S2j-10 + N08 S2j-8 + 
N06 S2j-6 + N04 S2j-4 + N02 S2j-2 + 2N00 S2j+ N02 S2j+2 + N04 S2j+4+ N06 S2j+6

+ N08 S2j+8 + N010 S2j+10 + N012 S2j+12 + N014 S2j+14 + N016 S2j+16 + N018 

S2j+18 

= ni2j.

 
Values of S2j can be found out by solving the above set of equations. 
 The same assumption of higher order terms in ρ used by Kumar et al.[5] in the case of a circular hole 
is used during the derivation of expression for full field stress distribution in an isotropic plate with a square 
hole.  
 

  ( ) 2 j
2 j 4 j 2 4 j

S 4 j 3 4 j 1
f

2 

  
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  
. (A.12) 

 
 In the case of a circular hole C0 and C2 are constants irrespective of the values n and k, and 
correspond to the value of isotropic case. But in the case of a square hole, S0 and S2 are not constants and 
hence they should be considered separately. A new assumption for higher power of ρ must be used 
corresponding to j = 0 and j = 1 as given below 
 

    cos
-

2 j
4 j 2 4 j 4

S 4 j 1 4 j 3
2 j

4 j 2  

  
  

  
 (A.13) 

 
and for values of j > 2 higher powers of ρ as given in Eq.(A.12) can be used. 
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Nomenclature 
 
 a − hole radius 
 EL − Young’s modulus along lateral direction 
 ET − Young’s modulus along transverse direction 
 GLT − modulus of rigidity 
 SCF − stress concentration factor 
 Si − isotropic coefficients for square hole  
 Ss − orthotropic coefficients for square hole  
 t − virgin shell thickness 
 tr − reinforcement thickness 
 u − displacement along x axis 
 v − displacement along y axis 
 νLT − Poisson’s ratio 
 ε − hole shape parameter 
 σθ − tangential stress distribution 
 σθ /σ − distribution of tangential stress concentration factor 
 ρ − ratio of distance of point on the surface from centre of hole, to the width or radius of hole along x-axis or y-axis 
 θ − angle measured from loading direction 
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