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Time-dependent flow investigation through rotating curved ducts is utilized immensely in rotating machinery 
and metal industry. In the ongoing exploration, time-dependent solutions with flow transition through a rotating 
curved square duct of curvature ratio 0.009 have been performed. Numerical calculations are carried out for constant 
pressure gradient force, the Dean number Dn 1000 and the Grashof number Gr=100 over a wide range of the 
Taylor number values Tr1500 1500 for both positive and negative rotation of the duct. The software 
Code::Blocks has been employed as the second programming tool to obtain numerical solutions. First, time 
evolution calculations of the unsteady solutions have been performed for positive rotation. To clearly understand 
the characteristics of regular and irregular oscillations, phase spaces of the time evolution results have been 
enumerated. Then the calculations have been further attempted for negative rotation and it is found that the unsteady 
flow shows different flow instabilities if Tr is increased or decreased in the positive or in the negative direction. 
Two types of flow velocities such as axial flow and secondary flow and temperature profiles have been exposed, 
and it is found that there appear two- to four-vortex asymmetric solutions for the oscillating flows for both positive 
and negative rotation whereas only two-vortex for the steady-state solution for positive rotation but four-vortex for 
negative rotation. From the axial flow pattern, it is observed that two high-velocity regions have been created for 
the oscillating flows. As a consequence of the change of flow velocity with respect to time, the fluid flow is mixed 
up in a great deal which enhances heat transfer in the fluid.  
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1. Introduction 
 

Fluid flow and heat transfer in a curved duct is not only common in engineering applications such as 
in aircraft engines, gas turbines, rocket engines, fuel filler pipes, convoluted coolant channels and heat 
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exchangers, but also in biomedical sciences(i.e.in human veins and arteries). The investigation of flow 
behavior through a curved duct has been a fascinating subject for a long time. Some remarkable investigations 
on curved duct flows were made by Mondal et al. [1] (square cross-section), Rumsey et al. [2] (U-shaped 
duct), Valizadeh et al. [3] (spiral tubes), Chandratilleke et al. [4-5] (rectangular and elliptical duct), etc. 

Time-dependent flow study was first executed by Yanase and Nisiyama [6]. Recently, unsteady flow 
structures by changing the lift and drag coefficient for four equispaced rotating cylinders were examined by 
Zhang et al. [7]. They enumerated the power spectral density for the lift coefficient. Almost the same study 
was carried out by Nazeer et al. [8] for multiple staggered rows of square cylinders. Secondary structures due 
to the unsteady flow through a curved duct were investigated by Krishna et al. [9]. The fluctuation of axial 
velocity with respect to time was analyzed by Hashemi et al. [10] for both finite and infinite length curved 
pipes. Mondal et al. [11] investigated unsteady behavior of fluid flows in a non-rotating curved rectangular 
duct with respect to the Nusselt number for different aspect ratios. Various types of flow instabilities were 
found in their study. Flow and heat transfer through a rotating curved duct of the rectangular cross-section 
were predicted numerically by Islam et al. [12] and Hasan et al. [13]. Zhang et al. [14] tried to discuss the 
transient behavior of flows in a rotating cylinder. lslam et al. [15] showed the unsteady behavior of flows for 
both positive and negative rotation of a curved channel. They obtained the phase space diagram for oscillating 
flows. Hasan et al. [16-18] elucidated the time-dependent flow transitions as well as steady solutions and heat 
transfer through a curved square duct. A complete study on bifurcation, unsteady behavior and heat transfer 
through a rotating curved duct was performed by Mondal et al. [19]. Arpino et al. [20] calculated the transient 
natural convection in partly porous cavities for different Darcy and Rayleigh numbers with large aspect ratio 
values. Dynamical response of fluid flows through a rectangular curved duct for various Dean numbers was 
investigated by Liu and Wang [21]. They revealed the Hilbert-Huang spectrum for the regular and irregular 
oscillations. Among the papers cited above, scholars have not acquired the power spectrum to well detect the 
transition for oscillating flows in a rotating curved channel. The paper is an attempt to fill up this gap. 

Two as well as the three-dimensional study of unsteady solutions for curved square duct flow was 
introduced by Watanabe and Yanase [22]. They disclosed the flow patterns three-dimensionally. Dolon et al. 
[23] worked on the curved rectangular duct flow with strong curvature and reported that the number of vortices 
is enhanced for increasing the Dean number for both steady and unsteady flows. Using the energy gradient 
method, Nowruzi et al. [24] explained the pattern variation of the flow in a 180-degree inlet over a wide range 
of aspect ratio values. Wang et al. [25] experimentally examined the flow past a retrograde rotating cylinder 
varying the gap ratios and rotation, where they adopted the particle image velocimetry method to visualize the 
flow patterns. Rahmani et al. [26] exposed the transient behavior in temperature profiles by applying Fourier 
transformation and separation of variable method for composite cylindrical cells. Nobari et al. [27] employed 
the second-order central difference discretization method to find out the amount of heat transfer in the curved 
annular pipe for different Reynolds numbers. Zhang et al. [28] described the effects of Coriolis and centrifugal 
forces in curved ducts for various aspect ratios. Two- to ten-vortex flow patterns have been displayed for 
various Grashof numbers for large aspect ratios by Mondal et al. [29]. A numerical as well as experimental 
study was carried out by Yamamoto et al. [30] for rotating curved square duct. Vector plots of the axial velocity 
and the change of the velocity profiles for altering the angles were investigated by Kim et al. [31] numerically. 
Wu et al. [32] studied the secondary flow pattern for different Dean numbers and tried to illustrate the change 
of flow variations. Sultana et al. [33] tried to establish a relationship between the flow velocity and temperature 
profile with specifying the pressure gradient parameter. Li et al. [34] discussed the Dean instability in the 
turbulent flow of a viscous incompressible fluid for three different types of curved ducts. Nouruzi et al. [35] 
studied on the influence of elasticity in the secondary flow intensity in the curved square duct driven by FTCS 
finite difference method. The amount of heat transfer from the duct was studied by them. Secondary flow 
structures for rectangular and elliptical ducts with large aspect ratios were analyzed by Chandratilleke et al. 
[5]. They showed the effects of the secondary flows on convective heat transfer. Ghobadi and Muzychka [36] 
performed heat transfer and pressure drop correlations for both curved and coiled circular tubes. Heat transfer 
in a nanofluid flow through a curved square duct was studied by Sasmito et al. [37]. However, there is no 
known study to describe the transitional behavior of two types of velocity profiles such as axial and secondary 
flow together with the temperature profiles on oscillating and non-oscillating flows. The present study 
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describes not only the unsteady flow behavior for both positive and negative rotation of the duct but also tries 
to find out a relationship between the axial and secondary flow velocity with convective heat transfer. 
 
2. Governing equations 

 
Consider a hydro-dynamically and thermally fully developed two-dimensional (2D) flow of a viscous 

incompressible fluid through a rotating curved square channel, whose height or width is 2d . The coordinate 
system with relevant notation is shown in Fig.1, where the 'x  and 'y -axes are taken to be in the horizontal 
and vertical directions m, respectively, and 'z  is the axial direction. It is assumed that the bottom wall of the 
channel is heated, while cooled from the top. The temperature of the bottom wall is 0T T  and that of the 
top wall 0T T , where T 0 . It is also assumed that the flow is uniform in the 'z -direction and it is driven 
by a constant pressure gradient G  along the centre-line of the channel as shown in Fig.1.  

 

(a)

       

(b)  

 
 

Fig.1. (a) Coordinate system of the curved duct, (b) Cross-section of the duct. 
 
Then, the continuity, Navier-Stokes and energy equations, in terms of dimensional variables, are 

expressed as: 
continuity equation 
 

  ' ' '
' ' '

u v u 0
r y r

.        (2.1)  

 
momentum equations 
 

  T2 w
2 2 2u u u w 1 P u u 1 u uu v 2 2 2t r y r r r rr y r

,  (2.2) 

 

  ,
2 2v v v 1 P v 1 v vu v g T2 2t r y y r rr y

                        (2.3)  
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  ,T2 u
2 2w w w u w 1 1 P w w 1 w wu v 2 2 2t r y r r z r rr y r  

(2.4) 

 
energy equation 
 

  
2 2T T T T 1 T Tu v 2 2t r y r rr y

                                (2.5) 

 
where ' 'r L x , and 'u , 'v and 'w  are the dimensional velocity components in the 'x , 'y and 'z  directions, 
respectively and these velocities are zero at the wall. Here, 'P  is the dimensional pressure, 'T  is the 
dimensional temperature and 't is the dimensional time. In the above formulations, ,  , ,  and g  are the 
density, the viscosity, the coefficient of thermal expansion, the coefficient of thermal diffusivity and the 
gravitational acceleration, respectively. Thus in Eqs (2.1) to (2.5) the variables with prime denote the 
dimensional quantities. The dimensional variables are made non-dimensional by using the representative 

length d  and the representative velocity 0U
d

, where  is the kinematic viscosity of the fluid. The non-

dimensional variables are defined as  
 

  
0

,2 ', , ,  , ,
U0 0

1u v x y zu v w w x y z
U U d d d

 

 

  , , ,  ,  0
2 2

0 0

T U d P P dT t t P G
T d L zU U

 

 

where  is the non-dimensional curvature defined as d
L

. Since the flow field is uniform in the z -direction, 

the sectional stream function  is introduced as 
 

  1u
1 x y      

 and    1v
1 x x

.  (2.6) 

 
Then, the fundamental equations for ,w  and T  are articulated in terms of non-dimensional variables 

as 
 

  ( , ) ( )
( , )

2

2
w w w w1 x Dn 1 x w w Tr
t x y 1 x 1 x y x y

,      (2.7) 
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  ( , )
( ) ( , ) Pr 2

T 1 T 1 TT
t 1 x x y 1 x x

.            (2.9) 

 
The non-dimensional parameters Dn, the Dean number Gr, the Grashof number; Tr, the Taylor number 

and Pr , the Prandtl number, which appear in Eqs (2.7) to (2.9) are defined as 
 

  Dn ,  Tr ,  Gr , Pr
3 3 3

T
2

Gd 2d 2 2 d g Td
L

.         (2.10) 

 
The stiff boundary conditions for w  and  are used as 

 

  ( , ) ( , ) ( , ) ( , ) ( , ) ( , )w 1 y w x 1 1 y x 1 1 y x 1 0
x y  

       (2.11) 

 
and the temperature T  is assumed to be constant on the walls as  
 
  , ,  , ,  ,T x 1 1 T x 1 1 T x 1 y .                     (2.12)  
 
 There is a group of solutions which satisfy the following symmetry condition with respect to the 
horizontal plane y 0 . 
 

  

( , , ) ( , , ),

( , , ) ( , , ),

( , , ) ( , , )

w x y t w x y t

x y t x y t

T x y t T x y t
 

                           (2.13) 

 
The solution which satisfies condition (2.13) is called a symmetric solution, and that which does not 

an asymmetric solution. In the present study, Tr values vary for Tr1500 1500 and Dn, Gr, and Pr are 
fixed as Dn 1000 , Gr 100 , .0 009and Pr .7 0  (water). 
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3. Numerical calculation 
 
3.1. Method of numerical calculation 
 

The present study is based on numerical simulation and in order to obtain a numerical solution the 
spectral method is used. By this method the variables are expanded in the series of functions consisting of 
Chebychev polynomials. The expansion functions ( )n x  and ( )n x  are as follows 

 

  
( ) ( ) ( ),

( ) ( ) ( )

2
n n

2 2
n n

x 1 x C x

x 1 x C x

              (3.1) 

 
where, ( ) cos cos ( )1

nC x n x  is the thn  order Chebyshev polynomial. ( , , ), ( , , )w x y t x y t  and ( , , )T x y t  

are expanded in terms of the expansion functions ( )n x  and ( )n x  as 
 

  

( , , ) ( ) ( ) ( ) ,

( , , ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( )

M N

mn m n
m 0 n 0

M N

mn m n
m 0 n 0

M N

mn m n
m 0 n 0

w x y t w t x y

x y t t x y

T x y t T t x y y

                         (3.2)
 

 
where M  and N  are the truncation numbers in the x  and y -directions, respectively, and ,  mn mnw  and mnT  
are the coefficients of expansion. To obtain a steady solution ( , ),  ( , )w x y x y  and ( , )T x y , the expansion 
series (3.2) is put into the basic Eqs (2.7)-(2.9) and the collocation method is applied. As a result, a set of 
nonlinear algebraic equations for ,  mn mnw  and mnT  are obtained. The collocation points ( , )i jx y  are taken 
to be 
 

  

cos , cosi j
i jx 1 y 1

M 2 N 2
                            (3.3)  

 
where , ,i 1 M 1, M 1, M,  and , ,j 1 N 1N 1, N, . Finally, in order to calculate the trembling solutions, the Crank-
Nicolson and Adams-Bashforth methods together with the function expansion (3.2) and the collocation 
methods are applied to Eqs (2.7) - (2.9). 
 
3.2. Numerical accuracy

 
The accuracy of the numerical calculations is investigated for the truncation numbers M  and N  used 

in this study. For good accuracy of the solutions, N  is chosen equal to M . Table 1 shows that M 20  and 
N 20  give sufficient accuracy of the present numerical solutions.  
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Table 1. The values of Q  and ,w 0 0  for various M and N at Dn 1000 , Gr 100 , .0 009  and 
Tr  & -10001000 . 

 

M N Q w(0,0) 
Positive Rotation 

16 16 291.1740208493182 382.6415407505621 
18 18 291.4440637777641 378.9279648439113 
20 20 291.5043954187757 378.2773776990996 
22 22 291.5491957619122 379.0478252693673 
24 24 291.5511087349998 379.0911636619511 

Negative Rotation 
16 16 322.2820420248867 381.0710697212343 
18 18 322.2817278220937 381.0904822522484 
20 20 322.2795158289131 381.3121404054820 
22 22 322.2790330741371 381.4151170197218 
24 24 322.2787357133204 381.5126278631146 

 
3.3. Resistance coefficient 

 

The resistance coefficient, known as the hydraulic resistance coefficient, plays a significant role in 
fluid dynamics. It predominantly shows us how much the axial flow is interrupted at the duct wall and 
mathematically it is written as  
 

  
* *

*
**

21 2

h

P P 1
2dz

. (3.4) 

 Here, * * *P P z G1 2 , regarded as the pressure gradient parameter, and the resistance coefficient

 is defined as the average of the dimensionless axial velocity w presented by 
 

  Dn
2

4 2
w

. (3.5) 

 

 In the above, *
1P and *

2P denote dimensional quantities, acts as the average over the cross section 

of the duct and *
hd  is the hydraulic diameter. The original axial velocity *w  is computed by 

 

  * , ,1 1
1 1w dx x y t dy

4 2 l
. (3.6) 

 
 Herein, Eq.(3.6) will be used to determine the resistance coefficient of the flow evolution by numerical 
computation.  
 
4. Results and discussion 
 

4.1.Case I: Positive rotation Tr0 1500  
 

In order to study the non-linear behavior of the unsteady solutions, we performed time history analysis 
of the flow followed by power spectrum for oscillating flows. Time-evolution of  for Tr 0  is shown in 
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Fig.2a. As seen in Fig.2a, the time-dependent solution for Tr 0  is multi-periodic. It is found that the flow is 
multi-periodic for all values of Tr in the range Tr0 230 . To observe the characteristics of flow evolution 
more clearly, power spectrum density of the time evolution outcomes is illustrated in Fig.2b for Tr 0  in the 
Frequency vs. power spectrum density plane. The power spectrum density is calculated by using log-log scale 
where the data are found from the frequency in terms of amplitude. The power spectrum density has been 
exposed showing not only the line spectrum of the fundamental frequency and its harmonics but also other line 
spectra with their harmonics which clearly shows that the oscillation presented in Fig.2a is multi-periodic. 
 

(a)  (b)  

 
 

Fig.2. (a) Time-history analysis, (b) Power spectrum; for Tr 10 . 
 

t 25.30 25.40 25.50 25.60 25.70 25.80 
 
 

        
w  
 

 
 
 
 
 
 
 
 

        T 
  

 

Fig.3. Streamlines of axial flow, secondary flow and temperature profiles for Tr 10 . 
 

Two types of flow velocity contours such as the axial flow and secondary flow along with the 
temperature profiles have been obtained as shown in Fig.3. Two- to four-vortex asymmetric solutions have 
been obtained for the regular oscillation where heat transfer is enhanced significantly by the secondary flows. 
It is evident that the streamlines of the axial velocity has been pushed to the inner side of the duct. It is 
demonstrated from the axial and secondary flow patterns that when four-vortex secondary flows are created 
then two high-velocity regions are created by the axial flow at . ,  . , .t 26 60 26 70 27 00 . Then time evolution 
of  for Tr230 540  is performed and it has been found that the flow is steady-state for all values of Trin 
this range. Figure 4a shows the steady-state solution for Tr 400 . Streamlines of the axial flow, secondary 
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flow and temperature profiles are shown in Fig.4b for Tr 400 . It is found that the unsteady solution at 
Tr 400  consists of asymmetric two-vortex solutions.  

 

(a)  

 
 

t 15.00 19.00 13.20 17.90 
 
 

 w  
 
 

      
(b) 

 
 
 
 
 
 
 

  T  

 
 

Fig.4. (a) Time-history analysis, (b) Streamlines of axial flow, secondary flow and temperature profiles for Tr 400 . 
 

(a)   (b) 

 
 

Fig.5. (a) Time-history analysis, (b) Power spectrum; for Tr 900 . 
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T 19.30 19.40 19.50 19.60 19.70 19.80 
 
 

w  
 
 
 
 
 
 
 
 
 

      T  
 

 
Fig.6. Streamlines of axial flow, secondary flow and temperature profiles for Tr 900 . 

 

(a)  

 

(b)

  
 

Fig.7. (a) Time-history analysis, (b) Power spectrum; for Tr 1300 . 
 

t 16.00 16.10 16.20 16.30 16.40 16.50 
 

w  
 
 
 
 
 
 
 
 
 

           
T  

 
Fig.8. Streamlines of axial flow, secondary flow and temperature profiles for Tr 1300 . 
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If Tr is increased in the positive direction, it is noticed that the steady-state flow turns into periodic 
flow as depicted in Fig.5 for Tr 900 . To assure the periodic flow power spectrum density has been obtained 
as shown in Fig.5b for Tr 900 . As seen in Fig.5b, the density of the harmonics is more but the line spectrums 
did not oscillate sufficiently. Typical contours of the axial flow, asymmetric two-vortex secondary flow and 
temperature profiles are displayed in Fig.6. The result shows that the periodic oscillation is converted into the 
multi-periodic flow at Tr 1300 , which is depicted in Fig.7a and the multi-periodic oscillation is well justified 
by drawing the power spectrum density as shown in Fig.7b. Streamlines of the axial flow, two-vortex 
asymmetric secondary flow and the temperature profiles are displayed in Fig.8. If the rotational speed is 
increased further, it is found that the oscillation is increased more than the multi-periodic flow and as a 
consequence the flow is turned into a chaotic flow which is plotted in Fig.9a for Tr 1450 . Power spectrum 
density as drawn in Fig.9b shows that the harmonics as well as its line spectrum oscillated strongly more than 
the periodic and multi-periodic oscillation and covered the surface of "Frequency vs. Power spectrum density" 
plane. Streamlines of the axial flow, secondary flow and temperature profiles are shown in Fig.10 for 
Tr 1450  and it is found that the chaotic flow is an asymmetric two- and three-vortex solution. 
 

(a)  (b)  

 
 

Fig.9. (a) Time-history analysis, (b) Power spectrum; for Tr 1450 . 
 

t 18.30 18.40 18.50 18.60 18.70 18.80 
 
 

w
 
 
 
 
 
 
 
 
 
 

T  

 
 

Fig.10. Streamline of axial flow, secondary flow and temperature profiles for Tr 1450 . 
4.2.Case II: Negative rotation Tr1500 0  
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Here, the unsteady flow characteristics for negative rotation is calculated for Tr1500 0 with 

Dn ,  Gr= , = .1000 100 0 009 . Figure 11a portrays the time evolution result for Tr 30  with respect to the 
resistance coefficient and the figure shows that the flow is a multi-periodic oscillation. The oscillating flow is 
endorsed by the power spectrum density of the unsteady flow as shown in Fig.11b, where the power spectrum 
density has the frequency response of a multi-periodic signal. Contours of the axial flow, secondary flow and 
temperature profiles for Tr 30 are shown in Fig.12. It is observed from Fig.12 that the axial velocity is 
pushed to the inner side of the duct and two high velocity regions are formed at the upper and inner walls. The 
secondary flow patterns show that asymmetric two- to four-vortex solutions are produced and the vortices are 
created at the outer wall of the duct. It is observed that there is a strong connection between the axial flow and 
secondary flow. It is seen that when two high-velocity regions are created, then the two-vortex secondary flows 
are converted into the four vortices. The temperature profiles are exhibited which show that substantial heat 
has been dispelled from the heated wall to the fluid, and it is  confirmed by noticing the number of secondary 
vortices generated at the outer wall. 

 

(a)  (b)

 
 

Fig.11. (a) Time-history analysis, (b) Power spectrum; for Tr 30 . 
 

t 16.80 16.90 17.00 17.10 17.20 17.30 
 
 

w  
 
 
 
 

      
 
 
 
 
 

     T
 

Fig.12. Streamlines of axial flow, secondary flow and temperature profiles for Tr 30 . 
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(a)

        t   
 
 

w 
 
 
 
 

(b) 
Ψ 

 
 
 
 
 

T 
  

15.00 

 
 

Fig.13. (a) Time-history analysis, (b) Streamlines of axial flow, secondary flow and temperature profiles for 
Tr 230 . 

 
If Tr is increased at little in the negative direction, for example Tr 230 , the flow becomes steady-

state as shown in Fig.13a. Figure 13b shows typical contours of the axial flow, secondary flow and temperature 
profiles for Tr 230 and it is found that the steady-state flow is a four-vortex solution. If Tr exceeds 300, 
then the steady-state solution is turned into multi-periodic flow as shown in Fig.14a, and this oscillation is well 
justified by the power spectrum density as revealed in Fig.14b. Power spectrum density demonstrates that the 
line spectrum as well as its frequencies are enhanced successively from 0.01 to 0.1 and when it crosses the 
point 0.1 the oscillation becomes weak gradually. Two types of flow velocities; axial and secondary flow, and 
the temperature profiles are shown in Fig.15. It is seen that the flow patterns represent opposite characteristics 
of the flow that has been occurred from Tr 2500  to Tr 300 . Two high-velocity regions have been formed 
near the outer wall of the duct. As seen in the secondary flow pattern, two-, three- and four-vortex asymmetric 
flows are formed at the inner wall of the duct.   

 

(a)   (b)  

 
 
 

Fig.14. (a) Time-history analysis, (b) Power spectrum; for Tr 400 . 
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t 13.55 13.65 13.75 13.85 13.95 14.05 
 
 

w  
 
 
 
 
 
 
 
 
 
 

           
T  

  
 

Fig.15. Streamline of axial flow, secondary flow and temperature profiles for Tr 400 . 
 
The multi-periodic flow again changes into the steady-state flow for Tr 730  as shown in Fig.16a. 

Only the two-vortex secondary flow with the axial flow and the temperature profiles are obtained as shown in 
Fig.16b. We then investigated the time-dependent flow for Tr 1100  as shown in Fig.17a and it is found 
that the unsteady flow at Tr 1100  is a time-periodic flow. In order to see the flow evolution more precisely 
we also obtained power spectrum density of the time change of  as shown in Fig.17b, which shows that only 
the line spectrum of the fundamental frequency and its harmonics are seen, which indicates that the flow is 
time periodic for Tr 1100 . Streamlines of the axial flow, secondary flow and temperature profiles for 
Tr 1100  are shown in Fig.18 for one period of oscillation at . .17 10 t 17 50 , and it is found that the 
periodic flow oscillates in the asymmetric two-vortex solution. 

 

(a)

  

        t   
 
 

w 
 
 
 
 

(b)  
Ψ 

 
 
 
 

T 
  

19.00 
 

Fig.16. (a) Time-history analysis, (b) Streamlines of axial flow, secondary flow and temperature profile for 
Tr 730 . 

 



Numerical investigation on the transition of fluid flow ... 59 

 

(a)  (b)  

 
 

Fig.17. (a) Time-history analysis, (b) Power spectrum; for Tr 1100 . 
 
If the Taylor number is increased further, to observe the flow characteristics more explicitly, the time-

dependent solution for Tr 1450  is executed as presented in Fig.19a. It is seen that the flow is clearly 
chaotic. It is observed that the flow field at Tr 1450  fluctuates with a higher amplitude in the disorderly 
oscillating mode which has been shown in Fig.19b. Figure 19b exhibits that the flow is strongly chaotic. The 
configuration of the axial flow, secondary flow and temperature profiles for Tr 1450  are shown in Fig.20. 
It it is observed from Fig.20 that the flow patterns are asymmetric two- to four-vortex solutions. Here the 
isotherms exhibit substantial heat that is dispelled from the heated wall to the fluid, and it is confirmed by 
noticing the number of secondary vortices generated at the outer bending wall. 
 

t 15.80 15.90 16.00 16.10 16.20 16.30 
 
 

w  
 
 
 
 
 
 
 
 
 
 

T  

 
Fig.18. Streamlines of axial flow, secondary flow and temperature profiles for Tr 1100 . 
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(a)  (b) 

 
 

Fig.19. (a) Time-history analysis, (b) Power spectrum; for Tr 1450 . 
 

t 19.50 19.60 19.70 19.80 19.90 20.00 
 
 

w  
 
 
 
 
 
 
 
 
 

T  
 

 
 

Fig.20. Stream line of axial flow, secondary flow and temperature profiles for Tr 1450 . 
 

5. Conclusion 
 
Transitional behavior of the unsteady solutions with flow transition and convective heat transfer 

through a rotating curved square duct of small curvature has been investigated numerically by using the 
spectral method. The bottom wall of the duct is heated, while cooled from the top, the outer and inner walls 
being adiabatic. Unsteady flow characteristics have been studied for both positive and negative rotation of the 
duct for the Taylor number Tr1500 1500 . For positive rotation, it is found that the flow undergoes 
through various flow instabilities in the scenario, “multi-periodic steady-state periodic multi-periodic

chaotic”, if Tr is increased in the positive direction. Power spectrum densities have been calculated for 
regular and irregular oscillations and it is found that the line spectrums and their frequencies are increased for 
the chaotic solution more than for the periodic or multi-periodic solution. For negative rotation, it is observed 
that the flow transition is changed dramatically within a short range of Tr and the flow evolution is obtained 
as “multi-periodic steady-state multi-periodic steady-state periodic chaotic”, if Tr is increased 
in the negative direction. The secondary flow pattern shows that only two- and four-vortex solutions are 
produced for the steady-state solution while two- to six-vortex for the regular and irregular oscillation for both 
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positive and negative rotation. A dramatic change is observed due to the effect of centrifugal- Coriolis force 
for Tr350 2500 . The axial flows show that two to three high-velocity regions are observed at the 
regular and irregular oscillation. It is follows from the axial and secondary flow that the vibration of the fluid 
is increased for the regular and irregular oscillations; as a result, the fluid is mixed up and consequently heat 
transfer is enhanced significantly from the heated wall to the fluid which is shown by the temperature profiles. 

Nomenclature 

 Dn − Dean number                                        
 d  − half width of the cross section              
 Gr − Grashof number                                    
 h  − half height of the cross section             
 L  − radius of the curvature                          
 Pr − Prandtl number                                       
 T  − temperature 
 Tr − Taylor number                                       
 t  − time     
 u  −velocity components in the x direction                                                                     
 v  − velocity components in the y direction    
 w  − velocity components in the z direction    
 x  − horizontal axis     
 y  − vertical axis                                       
 z  − axis in the direction of the main flow     
  − resistance coefficient     
  − density 
  − thermal diffusivity     
  − sectional stream function 
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