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In this paper, we consider a one dimensional problem on a fractional order generalized thermoelasticity in
half space subjected to an instantaneous heat source. The Laplace transform as well as eigen value approach
techniques are applied to solve the governing equations of motion and heat conduction. Closed form solutions for
displacement, temperature and stress are obtained and presented graphically.
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1. Introduction

In 1956 Biot developed the dynamical coupled theory of thermoelasticity (CTE) which predicts an
infinite speed of heat transportation in elastic media. The modified generalized thermoelastic theories have
been developed by Lord and Shulman [1967] (LS model) and later Green and Naghdi [1991, 1992, 1993]
(GN models LILII). Lord and Shulman tried to remove the paradox of infinite velocity of thermal
disturbances inherent in the CTE. They used a wave type heat conduction law instead of the classical Fourier
law and included a single relaxation time. Dhaliwal and Sherief [1980] extended the theory introducing the
anisotropic case. In 1972, Green and Lindsay introduced two relaxation time parameters and modified the
energy equation and constitutive equations in the theory of generalized thermoelasticity.

Abel first introduced fractional derivatives in the solution of integral equation which arises in the
tautochrone problem. Fractional calculus was successfully used to modify many mathematical models in the
field of mechanics of solids.

Kimmich [2002] considered anomalous diffusion characterized by the time-fractional diffusion wave
equation using the Riemann-Lioville fractional integral.

We consider a one-dimensional problem for a half space in the context of the Lord and Shulman
model with a heat source in fractional ordered generalized thermoelasticity. We have applied the eigen value
approach and Laplace transform with numerical inversion. The obtained results are also presented
graphically.

2. Basic equations and formulation of the problem

We consider a homogeneous, isotropic, thermoelastic conducting solid which is unstressed and
unstrained initially, subjected to an instantaneous heat source. We consider the problem in a half-space
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region R ={x:0<x<o}. The problem is to determine the subsequent distribution of temperature and

deformation fields with regard to conductivity of the medium.
Catteneo [1958] introduced a law of heat conduction by modifying the classical Fourier law in the

form
0q.
qi+roi=—kVT. 2.1
ot
However, Youssef [2010] introduced another formula of heat conduction as
o
q;+7y 68 gi =—kI*'VT, 0<o<! 2.2)
t
where
t
1
1°f(t) = ——|(t-0*" £ (x)dr, 0<a<l, (2.3)
I'(a) !

0
rf()=r(t).
Here a is the fractional order parameter Youssef proved the uniqueness theorem and using the state-
space approach presented one and two dimensional applications without any heat source term in the energy

equation.
Now the basic heat equation is

2

_ 0 0 i
il IT’ﬁ :(54—1:0 yJ(pCET+yTOe)—pQ—pIOQ. 2.4

The constitutive equation takes the form
o, = 2pe; +heyd; —yTd,; . (2.5
The equation of motion without body forces takes the form

For a one dimensional medium, we assume that

wo=u(x,t),  u,=u,=0. 2.7

The strain component is in the form

ou
e=—

- 2.8)

Hence the heat equation, constitutive equation and equation of motion (2.4)-(2.6) may be written as
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KT =| =41, — |(pCrT +yTpe)—p| I1+1,— |0, 2.9
atz [at Oatzj(p E Yip ) p( Oat)Q ( )
’u oT _ du
A+2U)—-y—=p—, 2.10
( H) ox? ! 0x p6x2 @10
c =(x+2u)a—”—yT. (2.11)
XX ax
The following non-dimensional variables are used as follows
Gzﬂ, xX'=Véx, u'=Vou, =Vt
T, ’
T, =V?81,, G'XXZ&, Q’=L
0 ’ m kT 267
where V2=—x+2u, Bzz—k+2u, bzﬂ, g:—y , 8=—pCE.
p 0 1 pCk k
Therefore the Eqs (2.9)-(2.11) become
070 (00 %0 0’0 0’0 0
[T | 2y = |+ g =—+1)—— |-p| [+1,— |O, 2.12
or’ [at ’ a/J g[ﬁxat * oxor? p( ’ 6th e
’u 80 ,0%u
2 2
S p— =B, 2.13
p 7 o p P, (2.13)
o=p? 2 (1+9). (2.14)
ox

The half space x>0 1is subjected to an instantaneous heat source representing its energy
continuously along positive direction of the X - axis with a constant velocity. So the heat source is taken as

0= Q08(x—vt) .

Where Q, is constant of heat sources and 6(.) is the Dirac delta function.

3. Solution procedure: the vector-matrix differential equation

Using the Laplace transform defined for any function f () as follows
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o0

f(x,5)= J'f(x,t)ef‘“dt

0

where s is the transform parameter such that Re(s)>0 and applying both sides of Eqs (2.12)-(2.14) and

. ou . 00
assuming that u,a,e,a are equal to zero.

Equations (2.12)-(2.14) become

— 2
=B"—5-bl1+0),
B*—=-b(1+0)
du  ,_ do
—— =sut+ta—,
X X

b
B_2 .

where a=

di  Qps*! (1+ros)e_7

3.1)

(3.2)

SX

— =5 (1+7195)0+gs* (1+71ys)
x d.

(3.3)

\%

Equations (3.2) and (3.3) can be written in the form of a vector-matrix differential equation using

(Lahiri ef al. [2009])

dz -
— =4z +
dx f
where
- \T
z-|ow 222
dx  dx
0 0 1 0
0 0 0 1
A=
az; 0 0 ay
_0 a, ayz 0

T=fifofss o)

f1:0= f2=0> f3=_

az; =s*(1+1ys), az, =gs* (1+7ys),

0ps® ! (1+1y5)e v

(3.4)

(3.5)

(3.6)

(3.7)

fa=0, (3.8)

(3.9)



A study on fractional order thermoelastic half space 195

a, =5, a;z=a. (3.10)
The eigenvalues of the matrix A can be determined from the characteristic equation of the matrix A as

5 —|:S(l (l+tos)(1+ga)+s2]7u2 +5%2 (I+719s)=0. (3.11)

Therefore the coefficient matrix A4 has four eigenvalues which are %,, X,,—X;,—A,, respectively.
The solution of the Eq.(3.11) is

2 [sa(]+‘cos)(]+ga)+sz]i\/[sa (1+719s)(1+ga)+s’ T =45 (1+145)
- 2

L i=xl, +£2.3.12)

Now consider non-negative eigenvalues A ;,A,of A for physical nature of the problem.
Now the eigenvectors of the co-efficient matrix A corresponding to the eigenvalues A;, A,,—A;,—A, of A
be are

X=X o, Xo=@hea,, = g, X=X, (3.13)
where
X:[kz—sz,ak,l(kz—sz),alz] (3.14)

We consider the inverse of the matrix V' = (X,,XZ,X3,X4) as V1= ((;)ij), i,j=1,2,3,4
Then the solution of the differential Eq.(3.4) is

4
7=, (3.15)
i=1
where y. = C.e"* + e~ jQ,e_x’x (3.16)
4
and Q=) 0,/ (3.17)
j=1

where C is an arbitrary constant which is to be evaluated using boundary conditions.
Now using Egs (3.15) and (3.17) the displacement component, heat component can be written as

S§X
— — A
i(x,5) = CA " +Cohre" 2 —aQie v L

A
L2
N

N
Ai+— Ary+—
v \%

, (3.18)
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B sx| (22 222
8(x.5)=C) (12 =57) e+ Cy (1,7 -57) 2 ~ Qe ¥ (- )+( 2 ) : (3.19)

k,+£ k2+£

\%
sl (a2 =52 A7 —s?
G(x,s)=b ClszekforCzszeka—l—Q]e v ( ! ) ( ? ) S M Ay (3.20)
A+ o+ | Y l]+% k2+%
where
o~/
I+t

0= Qs (1+795) and C;,C, are arbitrary constants.

2y (1 -7

4. Initial and boundary conditions

We consider two boundary conditions for the half-space problem to obtain the co-efficients C; and

C, of Eqgs (3.18)-(3.20).
CASE-1:

mechanical boundary condition- (0,¢) =0,

thermal boundary condition- 6(0,¢)=0,H (t)

(a)
(b)

where 0, is the constant temperature and H (t) is the Heaviside unit step function. The Laplace transformed

boundary conditions, for ¢ >0 are

6(0,s)=0,
— 0
0(0,5)=-"2
(0.5)=~

Now from Egs (3.18)-(3.20) we get

_(kzz—sz)R—M M (17 =57 )R
- (2" -2/) mho G (7 -27)
where R 1 Q()Sa_3 (1 + Tos) (Mz —SZ) . (7\,22 —SZ) sy %y

4.1

(4.2)

4.3)
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0, 0! (14ps)| (M7 =57) (2757)

§ 2V7h1(7¥12—7L22) A+ oyt
A% A%

and M =

CASE-2:

(a) mechanical boundary condition - G(O,t) =0,
0,t<0

(b) thermal boundary condition - 6(0,7) =16, ZL’O <t<t,
0
0,,t>1,

where 0, is a constant and #, is the ramping time parameter.
Taking the Laplace transformation of the boundary condition, we get

6(0,s) =0, 4.4)
= 0,(1-e
0(0,5) =t—1( - } (4.5)
0 N
Similarly, from Eqgs (3.18)-(3.20)we get
. _(x/—sz)R—M o _M—(x,f—sz)R ws)
1= 2= .
(7»22 _Mz) (7»22 _Mz)
_ 22 22
where Rzi—Qosaj(IHOS) (}LI _ )+(x2 - ) +3 A + A

2 2 4 2
S 2"7¥1(7¥1 —7”2) k,+£ k2+£ VI, +5 A+
A%

and

> +

M—i(l_e_tosJ_QOSaj (1+‘E0S) (7&12—5‘2) (kzz_sg)
s 2V7\'1(7h]2—7\,22) 7L1+£ x2+£ .
v v

Iy

5. Numerical representation
The inversion of the Laplace transform of the expressions given in Eqs (3.18)-(3.20) for
displacement, temperature and stress respectively in the space-time domain is very complex. So we
developed an efficient computer programme for the inversion of the Laplace transforms. We follow the
method of Bellman et al. (1966) for this inversion of the Laplace transform. The numerical computations for

the field variables are performed for the time instants

t;=0.025775, t,=0.138382, t;=0.352509, t,=0.693147,

ts=121376, t,=2.04612, t,=3.67119,
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which are the roots of the Legendre polynomial of degree seven (vide Bellman et al. (1966)).

Here copper is taken as the thermoelastic material and the parameters (in S.I units) are given below
(Youssef, 2006)

A=7.76x10""N / m? p=3.86x10'°N /m?, 1, =0.001,

T,=293K, k=386 N/Ks, a;=178x10"K",

v=0.08, 5=888.6 m/s’ ,p=8954 Kg/m"

B’ = e=0.0168.

4,
6. Graphical representation

Now we consider the graphs obtained for two cases.
CASE-1:

1) Figure 1: This figure shows the variation of displacement against the space variable x for aa=0./. The
displacement u attains its maximum value near ¢ =t for x=0 and then decreases rapidly at t =7, and t =1, .
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- - —tte=08

— t:t“‘a:[M
t=tA‘a=O.8
t=ls,a=o.1

N - t=ls,a=o.8

c

25

Fig.1. Displacement distribution against x.

(i1) Figure 2:This figure shows that the temperature distribution against the space variable x for a=0./
attains its maximum value near t=¢, for x=0.2 and then decreases rapidly. Similarly near #=¢; the
temperature distribution increases upto x =0.2 and thereafter decreases towards zero. But for ¢=¢,it

decreases upto x =0.4 thereafter it increases and converges to zero. At o =0.8 the graphs are similar but
the attained maximum values and minimum values are different.
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Fig.2. Temperature distribution against x.
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(iii))  Figure 3: This figure shows that the stress distribution against the space variable x for o =0./
attains its maximum value near =¢;, for x =0.2 and then decreases rapidly. Similarly, for #=¢;and 7 =¢,

the displacement distribution at first increases and thereafter decreases towards zero. For a = 0.8 the graphs
are similar but their attained peak points and lowest points are.

CASE-2:

1= a1
— — L3
—— =] T
——-t={ v=08

1= w1
= — — Tehee0a

Fig.3. Stress distribution against x.

(iv)  Figure 4: The variation of displacement against the space variable x shows a difference in values for
a=0.] and a.=0.8 in the range /<t <7. For ao=0.] the displacement u attains its maximum value near
=t, ,t=t, ,t=t, for x =0 and then decreases towards zero. For a.=0.8 the temperature distribution also

starts from the maximum values near =¢, ,t=1t, ,t=1¢,.
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Fig.4. Displacement distribution u against x.
%) Figure 5: For a = 0.1 the temperature 0 increases and attains its maximum value near ¢t =t,,¢5,¢; for
x =0.3 and then decreases rapidly but for oo = 0.8 the graph shows different peak points.
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Fig.6. Temperature distribution against x.

Figure 6: This figure shows the stress distribution against the space variable x. For aa=0./ and

o= 0.8 the value of stress attains its maximum near ¢ =t, ,¢;, t; for x = (0.2 and thereafter decreases rapidly.
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Fig.6. The stress distribution against x.
7. Conclusion

The following conclusions can be drawn from the study on the thermoelastic solid subjected to an
instantaneous heat source in the context of fractional order theory of thermoelasticity:
1. The non-dimensional temperature reaches its maximum value at the location x =v¢ for specified time.
2. The magnitude of the maximum value of temperature increases as the fractional order parameter
increases.
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Nomenclature

Cp — specific heat

e; — components of strain tensor

k — thermal conductivity
T — temperature

T, — reference temperature
U

g; — heat flux components

— displacement components

V' — longitudinal wave speed

v — the velocity of the heat source
ar — thermal expansion coefficient

8 - thermal viscosity

A, — Lame’s constants
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'Y - Or (3 + 2)

¢ — — dimensionless coupling constant
E

p — density

1, — relaxation times
c; — components of stress tensor
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