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In this paper, we consider a one dimensional problem on a fractional order generalized thermoelasticity in 
half space subjected to an instantaneous heat source. The Laplace transform as well as eigen value approach 
techniques are applied to solve the governing equations of motion and heat conduction. Closed form solutions for 
displacement, temperature and stress are obtained and presented graphically. 
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1. Introduction 
 
 In 1956 Biot developed the dynamical coupled theory of thermoelasticity (CTE) which predicts an 
infinite speed of heat transportation in elastic media. The modified generalized thermoelastic theories have 
been developed by Lord and Shulman [1967] (LS model) and later Green and Naghdi [1991, 1992, 1993] 
(GN models I,II,III). Lord and Shulman tried to remove the paradox of infinite velocity of thermal 
disturbances inherent in the CTE. They used a wave type heat conduction law instead of the classical Fourier 
law and included a single relaxation time. Dhaliwal and Sherief [1980] extended the theory introducing the 
anisotropic case. In 1972, Green and Lindsay introduced two relaxation time parameters and modified the 
energy equation and constitutive equations in the theory of generalized thermoelasticity. 
 Abel first introduced fractional derivatives in the solution of integral equation which arises in the 
tautochrone problem. Fractional calculus was successfully used to modify many mathematical models in the 
field of mechanics of solids. 
 Kimmich [2002] considered anomalous diffusion characterized by the time-fractional diffusion wave 
equation using the Riemann-Lioville fractional integral. 
 We consider a one-dimensional problem for a half space in the context of the Lord and Shulman 
model with a heat source in fractional ordered generalized thermoelasticity. We have applied the eigen value 
approach and Laplace transform with numerical inversion. The obtained results are also presented 
graphically.  
 
2. Basic equations and formulation of the problem 
 
 We consider a homogeneous, isotropic, thermoelastic conducting solid which is unstressed and 
unstrained initially, subjected to an instantaneous heat source. We consider the problem in a half-space 
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region { : 0 }R x x    . The problem is to determine the subsequent distribution of temperature and 
deformation fields with regard to conductivity of the medium.  
 Catteneo [1958] introduced a law of heat conduction by modifying the classical Fourier law in the 
form 
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 However, Youssef [2010] introduced another formula of heat conduction as 
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 0I f t =   f t . 

 
 Here  is the fractional order parameter Youssef proved the uniqueness theorem and using the state-
space approach presented one and two dimensional applications without any heat source term in the energy 
equation. 
 Now the basic heat equation is 
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 The constitutive equation takes the form 
 

  ij ij kk ij ij2 e e T         . (2.5) 

 
 The equation of motion without body forces takes the form 
 

  ,ij j iu   . (2.6) 

 
 For a one dimensional medium, we assume that 
  

  
 ,xu u x t ,        yu = zu =0. (2.7) 

 
 The strain component is in the form 
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 Hence the heat equation, constitutive equation and equation of motion (2.4)-(2.6) may be written as  
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 The following non-dimensional variables are used as follows 
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 Therefore the Eqs (2.9)-(2.11) become 

 

  

α
2 2 2 3

1
0 0 02 2 2

I g 1 Q
t x t tt t x t

                                         
, (2.12) 

 

  

2 2
2 2

2 2

u u
b

xx t

  
   

 
,           (2.13) 

 

 2 u
b 1

x


     


.                                                                                                       (2.14) 

 
 The half space x 0  is subjected to an instantaneous heat source representing its energy 
continuously along positive direction of the x - axis with a constant velocity. So the heat source is taken as 

  .0Q Q x vt    

Where 0Q  is constant of heat sources and δ(.) is the Dirac delta function. 

 
3. Solution procedure: the vector-matrix differential equation 
 
 Using the Laplace transform defined for any function  f t  as follows 
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where s is the transform parameter such that Re(s)>0 and applying both sides of Eqs (2.12)-(2.14) and 
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 Equations (2.12)-(2.14) become 
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 Equations (3.2) and (3.3) can be written in the form of a vector-matrix differential equation using 
(Lahiri et al. [2009]) 
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42a s ,          43a a .       (3.10) 
 
The eigenvalues of the matrix A  can be determined from the characteristic equation of the matrix A as 
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 Therefore the coefficient matrix A  has four eigenvalues which are 1 , , ,2 1 2     , respectively. 
The solution of the Eq.(3.11) is  
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Now consider non-negative eigenvalues ,1 2  of A  for physical nature of the problem. 

Now the eigenvectors of the co-efficient matrix A corresponding to the eigenvalues 1 , , ,2 1 2      of A 
be are 
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where rC  is an arbitrary constant which is to be evaluated using boundary conditions. 

 Now using Eqs (3.15) and (3.17) the displacement component, heat component can be written as 
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4. Initial and boundary conditions 
 
 We consider two boundary conditions for the half-space problem to obtain the co-efficients 1C  and 

2C  of Eqs (3.18)-(3.20). 
 
CASE-1: 
 
(a) mechanical boundary condition-  , ,0 t 0   

(b)  thermal boundary condition-    , 00 t H t    

where 0 is the constant temperature and  H t  is the Heaviside unit step function. The Laplace transformed 

boundary conditions, for t 0  are  
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where 1  is a constant and 0t  is the ramping time parameter. 
 Taking the Laplace transformation of the boundary condition, we get 
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Similarly, from Eqs (3.18)-(3.20)we get 
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5. Numerical representation 
 
 The inversion of the Laplace transform of the expressions given in Eqs (3.18)-(3.20) for 
displacement, temperature and stress respectively in the space-time domain is very complex. So we 
developed an efficient computer programme for the inversion of the Laplace transforms. We follow the 
method of Bellman et al. (1966) for this inversion of the Laplace transform. The numerical computations for 
the field variables are performed for the time instants   
 

  .1t 0 025775 ,     .2t 0 138382 ,     .3t 0 352509 ,     4t  0.693147,   
 
  .5t 1 21376 ,     .6t 2 04612 ,     . ,7t 3 67119  
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which are the roots of the Legendre polynomial of degree seven (vide Bellman et al. (1966)). 
 Here copper is taken as the thermoelastic material and the parameters (in S.I units) are given below 
(Youssef, 2006) 
 

  =7.76 /10 210 N m ,=3.86 /10 210 N m ,     .0 0 001  ,  
 

  0T =293 K,         /k 386 N Ks ,      T =1.78 - -5 110 K , 
 

  .v 0 08 ,  =888.6 m/ 2s ,=8954 Kg/ 3m , 
 

  , .2 4 0 0168   . 

 
6. Graphical representation 
 
 Now we consider the graphs obtained for two cases. 
 
CASE-1: 
 
(i) Figure 1: This figure shows the variation of displacement against the space variable x for .0 1  . The 
displacement  u attains its maximum value near 6t t  for x=0 and then decreases rapidly at 4t t  and 2t t .  
 

 
 

Fig.1. Displacement distribution against x. 
 
(ii) Figure 2:This figure shows that the temperature distribution against the space variable x for .0 1   
attains its maximum value near 7t t  for .x 0 2  and then decreases rapidly. Similarly near 5t t  the 

temperature distribution increases upto .x 0 2  and thereafter decreases towards zero. But for 2t t it 
decreases upto .x 0 4  thereafter it increases and converges to zero. At .0 8   the graphs are similar but 
the attained maximum values and minimum values are different. 
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  −  T 3 2   

  − 
  EC


 dimensionless coupling constant 

  − density 
 0  − relaxation times 

 ij  − components of stress tensor 
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