
 

Int. J. of Applied Mechanics and Engineering, 2020, vol.25, No.4, pp.116-129 
DOI: 10.2478/ijame-2020-0053 

 
ANALYTICAL MODEL OF THE TWO-MASS ABOVE RESONANCE 

SYSTEM OF THE ECCENTRIC-PENDULUM TYPE VIBRATION TABLE 
 

O.S. LANETS, V.T. DMYTRIV* and V.M. BOROVETS 
Lviv Polytechnic National University, Institute of Engineering Mechanics and Transport 

Department of Mechanics and Automation of Mechanical Engineering 
Lviv, 79013, UKRAINE 

E-mails : poslanets1@gmail.com; Dmytriv_V@ukr.net; volbor1@gmail.com 
 

І.A. DEREVENKO 
Lviv Polytechnic National University, Institute of Civil Engineering and Building Systems 

Department of Strength of Materials and Structural Mechanics 
Lviv, 79013, UKRAINE 

E-mail: i.a.derevenko@gmail.com 
 

І.М. HORODETSKYY 
Lviv National Agrarian University, Faculty of Mechanic and Power Engineering 

Department of Project Management and Occupational Safety 
Lviv-Dubliany, 80381, UKRAINE 

E-mail:ivanhorod@gmail.com 
 
 

The article deals with atwo-mass above resonant oscillatory system of an eccentric-pendulum type vibrating 
table. Based on the model of a vibrating oscillatory system with three masses, the system of differential equations 
of motion of oscillating masses with five degrees of freedom is compiled using generalized Lagrange equations of 
the second kind. For given values of mechanical parameters of the oscillatory system and initial conditions, the 
autonomous system of differential equations of motion of oscillating masses is solved by the numerical 
Rosenbrock method. The results of analytical modelling are verified by experimental studies. The two-mass 
vibration system with eccentric-pendulum drive in resonant oscillation mode is characterized by an instantaneous 
start and stop of the drive without prolonged transient modes. Parasitic oscillations of the working body, as a 
body with distributed mass, are minimal at the frequency of forced oscillations. 
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1. Introduction 
 

Vibration machines have become widely used in various fields of production and engineering, which 
is confirmed by research of Bednarski et al. [1], Filimonikhin et al. [2], Nadutyi et al.[3]. This indicates the 
relevance and current importance of the use of vibration technique. 

Researchers, e.g., Babitsky [4], Luo [5] and Sokolov [6], claim that a significant number of vibration 
machines are vibration-shock type, which are in the category of nonlinear machines and can operate in both 
non-resonant and resonant modes. 

The influence of own frequencies in the resonance and above resonance range of the connected 
system and the dynamic character of the system at the presence of applied oscillatory loads are among the 
most important issues in the design of various-purpose hardware and engineering tools. Usually, in such 
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systems, the working element is a base plate–table, or a plate in the form of a plane of a given configuration 
and geometric dimensions.   

Tymoshenko's beam and plate studies have become wide spread. The linear and nonlinear parameters 
of the main frequency of the conical beams of Tymoshenko were determined by Rajesh et al. [7] with the 
method of the interconnected bias field; closed-form dependencies were derived as a ratio often in the form of 
functions of the flexibility coefficient, the coefficients of the maximum amplitude for boundary conditions with 
the hinged beam.ANSYS Parametric Design Language was used by Gharaibeh et al. [8] to create finite element 
models and calculate the first intrinsic frequency of the plate and the mode shape. Joubaneh et al. [9] performed 
a vibration analysis of the sandwich panels, and the master equations for the motion were obtained by 
Hamilton's principle with using the generalized differential quadrature method (GDQ). Also, these authors 
simulated in SolidWorks and experimented with free and forced vibration at different boundary conditions. 
Xianjie et al. [10] calculated the shift and forms of mode by a numerical method for a T-shaped plate using the 
Rayleigh – Ritz procedure for free and forced oscillations. These studies relate to beams and plates, which are 
elements of a single mass system with a given number of fixed points rigidly or elastically. 

Mirzabeigy et al. [11] investigated the free vibration of a two-mass system with nonlinear 
connection. Using the energy balance method based on the Galerkin – Petrov mathematical method these 
authors obtained amplitude-frequency dependencies for the generalized Duffing equation of vibration wave. 
The studies were theoretical. Panovko et al. [12] experimentally investigated the dynamics of the model of a 
serial two-mass oscillatory system with two unbalanced vibration exciters. The same authors analysed the 
effect of changes in the frequency of deviations of synchronous rotation on the forms of vibration of the 
carrier body and the mutual phase shift of imbalances. Jia-Jang Wu [13] investigated the system by replacing 
each elastic-mass system with three degrees of freedom by means of set of equivalent masses so that the 
dynamic characteristics of a rectangular plate (or main structure) with any number of elastic fixed masses 
with concentrated parameters could be obtained from the same plate containing identical sets of rigidly 
attached equivalent masses. This method can be applied to the numerical procedure of solution of the system.  

Vera et al. [14] investigated a system consisting of a plate and an elastically mounted additional 
mass with two degrees of freedom. The authors simulated an analytical model based on Lagrange 
multipliers, analyzed the shapes of modes with different design configurations and vibrational frequencies. 
Gursky et al. [15] carried out a complex dynamic analysis of a vibration shock system according to 
analytical dependencies based on the rod system and calculated the natural frequency of free oscillations and 
contact stiffness by the finite element method. The same authors simulated the bending of system 
elements.Gorman et al. [16-20] applied the method of superposition and experimentally investigated free 
oscillations of different sizes and designs of rectangular plates with different boundary conditions, point 
supports and with partially bounded edges.Abrahams et al. [21, 22] investigated plates fixed at one edge, 
with static or dynamic loads; the other edge had mixed boundary conditions. The task was reduced by these 
authors to the Wiener-Hopf matrix equation, which was solved by an approximate factorization scheme. 

In the open literature sources there is a lack of quantitative analysis regarding the effect of plate sizes 
and boundary conditions properties on the characteristics of vibration of rectangular plates, both free 
oscillations and forced. The above analysis shows that the relevant task of theoretical and experimental 
nature is to develop an analytical model of a two-mass above resonance system for practical use on the 
specific equipment with a mechanical vibration excitator, in particular of the eccentric-pendulum type. 

 
2. Description of the problem 
 

The schematic diagram of the proposed vibration table of the eccentric pendulum type is given. 
Working body (1) is mounted on a fixed base through vibroisolating elastic elements (2) (elements with low 
rigidity in the vertical direction). In the frame of the working body1 the drive shaft (3) is installed, on which 
the pendulum (4) is spindled with eccentricity of ε. The asynchronous electromotor (6) drives the shaft (3) 
through the petal coupling of (5). Due to the rotational motion of the shaft with a rate speedω, the F0 

excitation force vector arises and drives the oscillatory system. The mass of m1 is oscillated in counter-phase 
to the pendulum of m3 mass. By mass ofm1we mean the mass of the (mwb) working body with particle of 
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kelast·mload mass of the load ratio. The working body takes this mass as fully attached to it during vibration. 
  

 
 

Fig.1. Schematic diagram of the vibration table of the eccentric-pendulum type: (а) side view and (b) front. 
 
This is a two-mass above resonance oscillating system. The center of mass of the pendulum is 

lowered on H23 relative to the axis of rotation of the shaft, the transmission of force to the working body in 
the vertical direction is complete, in the horizontal direction - partial (the lower the center of mass of the 
pendulum relative to the axis of rotation of the shaft, the smaller the power transmission in the horizontal 
direction). The angle of deviation γ of the pendulum is small. 

The structural solution of the working body provides high rigidity of the design at rather small 
weight. The first natural frequency of the working body is ν1 ≈ 200 [Hz] (Fig.2), which is four times higher 
than the forced в = 50 [Hz]. Accordingly, the parasitic oscillations of the working body, as a body with 
distributed mass, will be minimal at the frequency of forced oscillations. 

 

 
 

Fig.2. The first natural frequency of oscillations of the working body as a body with distributed mass (table 
dimensions of 1200 × 900mm), according to the method of finite elements in environmentof the 
CosmosWorks module in SolidWorks software. 

 
The aim of the study is to develop a mathematical model based on analytical modelling of the 

characteristics of a two-mass above resonant oscillatory system at generalized coordinates and to design 
parameters of structural elements of vibrating tables for practical implementation of vibration technologies. 
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2. Analytical model of a two-mass above resonance system of the vibrating table 
 

2.1. Physical model of a vibrating machine 
 

Consider a plane model of a vibrating machine, sufficient for its mathematical description. We 
establish the basic coordinate system of xyz, the xy plane of which passes perpendicular to the axis of rotation 
of the shaft with eccentricity, and the y-axis is directed vertically (Fig.3). The z axis coincides with the center 
of m1 mass.  

 

 
 

Fig.3. Physical model of a vibrating table. 
 
The mechanical oscillating system consists of three absolutely rigid bodies: a working body of mass 

m1 with a J1 moment of inertia relative to the axis passing through the center of its mass perpendicular to the 
xy plane; an eccentric shaft of m2 mass with a J2 moment of inertia for the axis of rotation and a pendulum of 
m3mass with a J3 moment of inertia relative to the axis passing through the center of its mass perpendicular to 
the plane of xy. J2takes into account the moment of inertia of the electric motor rotor, in contrast to the 
m2parameter, which does not take into account the mass of the rotor. Such connection is provided by the 
petal coupling, on axes of x-y the mechanical linkage is provided between the shaft and the electric motor 
which practically does not transfer oscillating movement of the working body on these axes on the rotor of 
the electric motor. 

The plane or two-dimensional model of the vibrating machine consists of three bodies connected by 
two kinematic pairs of the fifth order. In this case, the motion of the system can be described by five 
independent coordinates: the oscillation of the m1 mass along the x, y axes and around its own center of mass 
in the xy plane, respectively, by the generalized coordinates of x1, y1 and φ1; rotational motion of m2 and m3 
masses around their own centers of mass in the xy plane by generalized coordinates of φ2 and φ3. 
Additionally, we consider the generalized coordinate to be the M moment of excitation of the electric motor. 
The oscillating system has six degrees of freedom. The plane mechanism has three solids (n = 3) connected 
by two kinematic pairs of the first kind (p = 2), in this case the number of degrees of its mobility is defined 
as 3n – 2p = 3 · 3 – 2 · 2 = 5. 

The distance from the center of m1 mass to the axis of the shaft is denoted by H12, and from the 
center of eccentricity to the center of mass m3 as H23. The horizontal distance from the vibration isolators to 
the center of mass of the working body is denoted as Hi3. The oscillating system is mounted on a fixed base 
through vibration isolators attached from below to the working body, and their stiffness coefficients along 
the x and y axes are cx and cy, respectively. 

To take into account the influence of the medium, we introduce the coefficients of viscous friction 
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that are proportional to the velocity. The coefficients μx and μy determine the energy dissipation in the 
vibration isolators during the movement of the m1 mass along the x and y axes, respectively. Coefficients μx 

and μy we will be considered as a complex indicator that additionally also takes into account the viscous 
resistance caused by the influence of the mзав mass of the loading medium. The coefficient μ̂2  reflects the 

viscous friction in the bearings between the working body and the shaft (between masses of m1 and m2), and 
μ̂3 – between the shaft and the pendulum (between masses m2 and m3).  

 
2.2. Development of the analytical model of the oscillating system  

 
We write the linear and angular coordinates of each of the masses m1, m2 and m3 for the scheme of 

the vibrating table according to Fig.3. After deviation from the equilibrium position of the center of m1 mass, 
we will write the coordinates of the center of m1 mass along the x and y axes as 

 

 1x
      

and       1y .                                                                           (2.1) 

 
The angular deviation of 1m  mass from the natural center of mass and mass of m2 and m3 around the 

natural centers of mass we can write respectively as 
 

φ1;      φ2     and      3 .                                                 (2.2) 

 
Coordinates (2.1) and (2.2) are generalized. The linear coordinates of centers of mass m2 and m3 are 

determined through the generalized coordinates as follows 
 

sin2 1 12 1x x H    ;       sin cos sin3 1 12 1 2 23 3x x H H         ; 
 (2.3) 

cos2 1 12 1y y H    ;     cos sin cos3 1 12 1 2 23 3y y H H         .                             
 

We have nine coordinates that fully describe the motion of three oscillating masses in a plane. Since 
the angular oscillations of the working body (mass m1) and the pendulum (mass m3) around their own centers 
of mass are small, to simplify further calculations we use the following approximations: , ,sin 1 2 1 2  

,cos 1 2 1  , which are fulfilled at small values of φ1,2. Then above coordinates (2.3) of the centers of mass 

m2 and m3 will take the form of 
 

2 1 12 1x x H    ;      cos3 1 12 1 2 23 3x x H H         ; 
 (2.4) 

2 1 12y y H   ;          sin3 1 12 2 23y y H H       .                  
 

Let us find the time derivatives of the coordinates of the masses m1, m2 and m3 
 

1 1x x   ;        1 1y y   ;        1 1    ; 
 

2 1 12 1x x H     ; 
 

2 1y y   ;        2 2    ;        (2.5) 
 

sin3 1 12 1 2 2 23 3x x H H            ; 
 

cos3 1 2 2y y     ;      3 3    . 
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The system of differential equations of motion of oscillatory masses for five degrees of freedom will 
be compiled using generalized Lagrange equations of the second kind 

 

; ;

; ;

,

1 1

1 2

3

x y
1 1 1 1 1 1 1 1

1 1 2 21 1 2 2

3 33 3

d K K P D d K K P D
F F
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d K K P D d K K P D
F F

dt dt
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F

dt

 


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

         (2.6) 

 
where K, P, D- respectively the kinetic and potential energy and the energy dissipation function in the 
system;  

, , , , 
1 1 1 2 3x yF F F F F    –generalized forces according to the corresponding linear and angular coordinates.  

We solve the system by numerical calculation using the Maple software environment. We perform 
intermediate character transformations. 

We determine the total kinetic energy K of the system, which is equal to the sum of the kinetic 
energies of the masses m1, m2 and m3, be 

 

1 2 3K K K K   .                                                                           (2.7) 
 

The masses are in plane or two-dimensional motion. Now then 
 

 ; ;
2 2 22 2 2 2 2 2

3 3 3 3 3 31 1 1 1 1 1 2 2 2 2 2 2
1 2 3

m x m ym x m y m x m y
K K K

2 2 2 2 2 2 2 2 2

 
        

       JJ J
.    (2.8) 

 
The corresponding expressions for derivatives of Eqs (2.5) were substituted into Eqs (2.8) and after 

simplification, we obtained 
 

2 2 2
1 1 1 1 1 1 1

1 1 1
K m x m y

2 2 2
     J ; 

 

2 2 2 2 2
2 2 12 1 2 12 1 1 2 1 2 1 2 2

1 1 1 1
K m H m H x m x m y

2 2 2 2
            J ;                        (2.9) 

 

sin2 2 2
3 3 1 3 12 1 1 3 1 2 2 3 1 23 3 3 12 1

1 1
K m x m H x m x m x H m H

2 2
                  

sin sin2 2
3 12 1 2 2 3 12 1 23 3 3 2 3 23 2 3 2

1
m H m H H m m H

2
                        

cos2 2 2 2
3 23 3 3 1 3 1 2 2 3 3

1 1 1
m H m y m y

2 2 2
           J . 

 

Therefore, the total kinetic energy of system (2.7) after summing of expressions (2.9) will be 
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    2 2 2 2 2
1 2 3 1 1 1 2 12 3 12 1

1 1
K m m m x y m H m H

2 2
          J  

   2 2 2 2
2 3 2 3 3 23 3 2 12 1 1 3 12 1 1

1 1
m m H m H x m H x

2 2
               J J

 
(2.10) 

sin sin3 1 23 3 3 1 2 2 3 12 1 2 2 3 12 1 23 3m x H m x m H m H H                     

sin cos3 23 2 3 2 3 1 2 2m H m y          .                                         
 

Using Eq.(2.10), we calculate the derivatives of the kinetic energy K by velocities 
 

( ) ( ) sin1 1 2 3 2 3 12 1 3 2 2 3 23 3
1

K
x m m m m m H m m H

x


           


  


; 

 

( ) cos1 1 2 3 3 2 2
1

K
y m m m m

y


     





; 

 

( ) ( ) sin2 2
1 2 12 3 12 1 2 3 12 1 3 12 2 2 3 12 23 3

1

K
m H m H m m H x m H m H H


          


   J ;  (2.11) 

 

( ) sin sin sin cos2
2 3 2 3 1 2 3 12 1 2 3 23 3 2 3 1 2

2

K
m m x m H m H m y


                 


     J ; 

 

( ) sin2
3 3 23 3 3 1 23 3 12 23 1 3 23 2 2

3

K
m H m x H m H H m H


         


   J . 

 

We determine the derivatives of kinetic energy Eq.(2.10) by generalized coordinates 
 

1

K
0

x





;       

1

K
0

y





;       

1

K
0





;      

3

K
0





;                         (2.12) 

 

cos cos cos sin3 1 2 2 3 12 1 2 2 3 23 2 3 2 3 1 2 2
2

K
m x m H m H m y


                


       . 

 

We calculate the time derivatives of dependencies (2.11) 
 

( ) ( ) ( cos sin )2
1 1 2 3 2 3 12 1 3 2 2 2 2 3 23 3

1

d K
x m m m m m H m m H

dt x

 
                

   


; 

 

( ) ( sin cos )2
1 1 2 3 3 2 2 2 2

1

d K
y m m m m

dt y

 
           

 


; 

 

( ) ( )2 2
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1

d K
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dt

 
        

  J  

( cos sin ) ;2
3 12 2 2 2 2 3 12 23 3m H m H H                                 (2.13) 

 

( ) ( sin cos sin cos )2
2 3 2 3 1 2 1 2 2 1 2 2 1 2

2

d K
m m x x y y
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 
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( cos sin ) ( )2 2
3 23 1 3 12 23 1 3 23 2 2 2 2 3 3 23 3

3

d K
m H x m H H m H m H
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              

    J . 
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We determine the potential energy of the system, as well as its derivatives by independent 
coordinates. It will be determined only by the potential energy of the elastic elements. For the zero level we 
take the equilibrium position of the system when the system is at idle state. Now then 

 

( ) ( )2 22 2
y 1 із 1 y 1 із 1x 1 x 1

c y H c y Hс x c x
P

2 2 2 2

   
    .                             (2.14) 

 

Simplifying of Eq.(2.14), we obtain 
 

 2 2 2 2
x 1 y 1 y із 1P c x c y c H    .                                                   (2.15) 

 

Derivatives in generalized coordinates from function of Eq.(2.15) are such 
 

 x 1
1

P
2c x

x





;     y 1

1

P
2c y

y





;     

1

2
y із 1

1

P
2c H


 


;    

2

P
0





;    

3

P
0





.              (2.16) 

 

Let us determine the D energy dissipation function proportional to the velocity 
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Simplifying Eq.(2.17), we obtain 
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Derivatives of generalized velocities of function (2.18) will be 
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       ˆ ˆ ˆμ μ  ;  μ2 2 1 3 2 3 3 3 2

2 3

D D 
        

 
     

 
. 

 

We determine the generalized forces for each of the generalized coordinates, the force of gravity is 
considered as the force of excitation 

 

1 1x yF F 0  ;   sin cos cos
1 3 12 1 3 2 3F m g H m g        ; 

 (2.20) 
cos cos

2 3 2 3F M m g      ;   sin
3 3 23 3F m gH     

 
where M –engine torque, which depends on the angular velocity of the rotor (coordinateφ2); g – acceleration 
of gravity.  

We connect the functions M and φ2 using the equation of an induction motor, Shatokhin [23]. 
Considering dependencies Eqs (2.12), (2.13), (2.16), (2.19) and (2.20), system (2.6) is written as 
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3. Results and discussions 
 

3.1. Results of mathematical simulation 
 

The values of mechanical parameters of the oscillatory system included in the developed 
mathematical model (2.21) are as follows 

 

       /  ,  /  , .   , .  /  ,2
x yc 17500 N m c 22500 N m 0 001 m g 9 81 kg m s         

 

       .   , .   , .   ,12 23 i3H 0 125 m H 0 41 m H 0 32 m    
 

     .  , .  , .  ,2 2 2
1 2 3J 13 54 kg m J 0 03 kg m J 7 8 kg m         

 

         ,   , .   , 1 2 3m 293 kg m 20 kg m 153 8 kg    
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       .   , μ .  /  ,  μ .  /  ˆ ˆ ,max 2 3M 18 7 N m 0 007 N m s rad 0 0035 N m s rad         

 

       μ  /  , μ  /  ,  .   ,  . 1
x y D 015000 N m s 15000 N m s T 0 0072 s 314 s           

 
Initial conditions 

( ) ; ( ) ; ( ) ; ( ) ; ( ) ; ( ) ;

( ) ; ( ) ; ( ) ; ( ) ; ( ) ; ( ) .

1 1 1 2 3

1 1 1 2 3

x 0 0 y 0 0 0 0 0 0 0 0 M 0 0

x 0 0 y 0 0 0 0 0 0 0 0 M 0 0

        

            
       (3.1) 

 
We solve the autonomous system of differential equations of motion of oscillating masses by the 

Rosenbrock numerical method with help of Maple13 software. For the transient mode of the machine, it is 
enough to limit the time to two seconds. The results of modeling by generalized coordinates are shown in 
Fig.4.  

 

 
 

Fig.4. Time dependencies of the motion of oscillating masses by generalized coordinates. 
 

The obtained dependencies indicate that the vibrating machine goes to steady state (electric motor – 
at rated speed) for about 1.7 [s] (Figs 4c, e). The set oscillation of the working body along the vertical axis 
isy1 = 0.32[mm] (Fig.4a) at a rotational speed   = 305[rad/s] (2920 [rpm]) (Fig.4c). In this case, the 
overload on the working body is as follows 
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The oscillation of the working body along the horizontal axis is x1 = 0.09 [mm] (Fig.4b), which is by 

3-5 times less than the vertical component. The amplitude of angular oscillations of the working body 
(Fig.4d) is insignificant and is φ1 = 0.00021 [rad] = 0.012[deg]. 

Except for angular oscillations at forced frequency of Ω = 305 [rad/s], the pendulum oscillates 
around the axis of the shaft with a period of 1.5 [s]. It reaches nominal speeds without significant dynamic 
modes. 

 
3.2. The results of experimental studies 
 

The experimental industrial sample of the vibration table is made (Fig.5a) and the signal (Fig.6) from 
(Fig.5b) rigidly fixed to the working body sensor (weight m1) was picked up. 

 

 
 

Fig.5.  Industrial sample of the vibrating table (a) and sensor (b) connected to the working body to record 
the time characteristics of the oscillating mass 
 

Assuming that the sensor is calibrated of  '
 /k 1gU 66 mV g (Fig.5b), and the amplitude value of the 

sensor is    . . / .  1U 1 9 1 4 2 0 25 V   (Fig.6a), the ξconversion factor, which is also an indicator of 

overload, is calculated as 
 

'
 ξ / . / . .1 k 1gU U 0 25 0 066 3 8   . 

 
The operation of the vibrating table with the loading of the working body with a steel disk of 130 kg 

mass, laid through a thick soft rubber pad, has been studied. This simulated the actual load, as the rubber has 
high dissipative properties and ensures a higher proportion of mass attachment. The amplitude of oscillations 
of the working body (Fig.6b) has not changed. 

 

а) 

b) 
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Fig.6. Experimental time characteristics of the movement of the working body without (a) and with (b) 
loading mass of mload = 130 [kg]. 

 
Compared with unbalanced machines, this design is characterized by instantaneous start and stop of 

the drive without prolonged transient modes (Fig.7). The system practically does not react tothe resonant 
peak caused by vibration-insulating elastic elements. 

 

 
 

Fig.7.  Experimental time characteristics of the working body movement when starting and stopping the 
vibrating table. 
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Conclusions 
 

Two-mass vibration systems with eccentric-pendulum drive are widely used in industrial production 
and in mechanical engineering. The above resonance mode of the oscillating system and the structural 
solution of the working body ensures high rigidity of the structure at a relatively low weight. The first natural 
frequency of the working body exceeds four times the forced oscillation frequency of the system. Therefore, 
the parasitic oscillations of the working body, as a body with distributed mass, are minimal at the frequency 
of forced oscillations. 

On the basis of Lagrange equations of the second kind, the system of differential equations ensures 
modeling of the energies of the oscillatory system without simplifications and conditional assumptions, 
including energy dissipation. For the adopted parameters, the simulation results showed that the oscillations 
of the working body along the horizontal axis are 3-5 times less than the vertical component. The amplitude 
of angular oscillations of the working body is insignificant and is 0.012 degrees. At nominal operating modes 
such an oscillating system is based on small dynamic modes. 

The proposed two-mass vibration system with eccentric-pendulum drive in above resonant oscillation 
mode is characterized by instantaneous start and stop of the drive without prolonged transient modes. The 
system does not react to the resonant peak caused by vibration-insulating elastic elements. Experimental tests 
have shown the advantage of the developed vibration system in comparison with unbalanced ones.  

 

Nomenclature 
 

 cx, cy − stiffness coefficients by the x and y axes, respectively, [N/m] 
 F0 − excitation force, [N] 
 H12,H23, Hi3 − linear dimensions, [m], Fig.1 
 J1, J2, J3 − moments of inertia of m1, m2andm3masses respectively, [kg·m2] 
 M − moment of perturbation of the rotor of the electric motor, [N·m] 
 Mmax − maximum torque of the electric motor, [N·m] 
 m1, m2, m3 − respectively, the mass of the working body, the eccentric shaft and the pendulum, [kg] 
 TD − electromagnetic time constant, [s] 
 x, y, z − coordinate axes 
 x1, y1 − linear coordinates of the center of m1 mass, [m] 
 x2, y2, x3, y3 − linear coordinates of centers of m2 and m3mass respectively, [m] 
 ε − eccentricity, [m] 
 νв − forced frequency of the working body, [Hz] 
 μx, μy − proportional to the velocity viscous friction coefficients reflect the energy dissipation in the vibration 

isolators as the masses of m1 move along the x and y axes respectively, [N·s/m] 
 μ̂ , μ̂2 3  − coefficients of the viscous rolling resistance of the bearings of the m1 and m3 masses, [N·m·s/rad] 

 φ1 − angular deviation of m1 mass from its own center of mass, [º] 
 φ2, φ3 − angular deviation of m2 and m3masses around their own centers of mass, respectively, [º] 
 ω0 − circular voltage frequency in the power grid, [s-1] 
   − rotational speed (the forced frequency), [rad/s] 
 

References  
 

[1] Bednarski Ł. and Michalczyk J. (2017): Modelling of the working process of vibratory conveyors applied in the 
metallurgical industry. – Archives of Metallurgy and Materials, vol.62, No.2, pp.721-728. 

[2] Filimonikhin G. and Yatsun V. (2017): Conditions of replacing a single frequency vibro-exciter with a dual-
frequency one in the form of passive auto-balancer.– Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 
vol.1, pp.61-68. 

[3] Nadutyi V.P., Sukharyov V.V. and Belyushyn D.V. (2013): Determination of stress condition of vibrating feeder for 
ore drawing from the block under impact loads. – Metallurgical & Mining Industry, vol.51, pp.24-26. 

[4] Babitsky V. (2013): Theory of vibro-impact systems and applications. – Springer Science & Business Media. 

[5] Luo G., Zhang Y., Xie J. and Zhang J. (2007): Vibro-impact dynamics near a strong resonance point. – Acta 
Mechanica Sinica, vol.23, No.3, pp.329-341. 



Analytical model of the two-mass above resonance …  129 

[6] Sokolov I.J., Babitsky V.I. and Halliwell N.A. (2007): Autoresonant vibro-impact system with electromagnetic 
excitation. – Journal of Sound and Vibration, vol.308, pp.375-391. 

[7] Rajesh K. and Saheb K.M. (2018): Large amplitude free vibration analysis of tapered Timoshenko beams using 
coupled displacement field method. – Int. Journal of Applied Mechanics and Engineering, vol.23, No.3, pp.673-
688. DOI: 10.2478/ijame-2018-0037 

[8] Gharaibeh M.A., Obeidat A.M. and Obaidat M.H. (2018): Numerical investigation of the free vibration of partially 
clamped rectangular plates. – Int. Journal of Applied Mechanics and Engineering, vol.23, No.2, pp.385-400. DOI: 
10.2478/ijame-2018-0022 

[9] Joubaneh Eshagh F., Barry Oumar R. and Tanbour Hesham E. (2018): Analytical and experimental vibration of 
sandwich beams having various boundary conditions. – Journal of Sound and Vibration, vol.18. 
doi.org/10.1155/2018/3682370 

[10] Xianjie Shi and Dongyan Shi (2018): Free and forced vibration analysis of T-shaped plates with general elastic 
boundary supports. – Journal of Low Frequency Noise, Vibration and Active Control, vol.37, No.2, pp.355-372. 
DOI: 10.1177/1461348418756021 

[11] Mirzabeigy A. and Madoliat R. (2018): Free vibration analysis of a conservative two-mass system with general 
odd type nonlinear connection. – Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., vol.88, pp.145-156. 
https://doi.org/10.1007/s40010-017-0372 

[12] Panovko G. and Shokhin A. (2018): Experimental analysis of the oscillations of two-mass system with self-
synchronizing unbalance vibration exciters. – Journal Vibroengineering PROCEDIA, vol.18, pp.8-13. 
doi.org/10.21595/vp.2018.19906 

[13] Jia-Jang Wu (2006): Free vibration characteristics of a rectangular plate carrying multiple three-degree-of-
freedom spring–mass systems using equivalent mass method. –International Journal of Solids and Structures, 
vol.43, No.3-4, pp.727-746. doi.org/10.1016/j.ijsolstr.2005.03.061 

[14] Vera S.A., Febbo M., Mendez C.G. and Paz R. (2005): Vibrations of a plate with an attached two degree of 
freedom system. – Journal of Sound and Vibration, vol.285, No.1, pp.457-466. DOI: 10.1016/j.jsv.2004.09.020 

[15] Gursky V. and Kuzio I. (2018): Dynamic analysis of a rod vibro-impact system with intermediate supports. – Acta 
Mechanica et Automatica, vol.12, No.2, pp.127-134. DOI 10.2478/ama-2018-0020    

[16] Gorman D.J. (1995): Free vibration of orthotropic cantilever plates with point supports. – Journal of Engineering 
Mechanics, vol.121, No.8, pp.851-857. 

[17] Gorman D.J. (1999): Accurate free vibration analysis of point supported Mindlin plates by the superposition 
method. –Journal of Sound and Vibration, vol.219, No.2, pp.265-277. 

[18] Gorman D.J. and Singal R.K. (1991): Analytical and experimental study of vibrating rectangular plates on rigid 
point supports. – AIAA Journal, vol.29, No.5, pp.838-844. 

[19] Gorman D.J. (1992): A general analytical solution for free vibration of rectangular plates resting on fixed supports 
and with attached masses. – Journal of Electronic Packaging, vol.114, 239. 

[20] Gorman D.J. (1999): Vibration analysis of plates by the superposition method. – Vol.3, World Scientific. 

[21] Abrahams I.D. and Davis A.M.J. (2002): Deflection of a partially clamped elastic plate. – In IUTAM Symposium 
on Diffraction and Scattering in Fluid Mechanics and Elasticity (pp.303-312). Springer Netherlands. 

[22] Abrahams I.D., Davis A.M. and Smith S.G.L. (2008): Matrix Wiener–Hopf approximation for a partially clamped 
plate. –Quarterly Journal of Mechanics and Applied Mathematics, vol.61, No.2. 

[23] Shatokhin V.М. (2008): Analysis and parametric synthesis of non-linear power transmission of machines: 
monograph. – Kharkiv: NU «KhPI», 456 p. 

 
 

Received: May, 14, 2020 

Revised:   July 8, 2020 


