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The investigation of thermal modulation on double-diffusive stationary convection in the presence of an 
applied magnetic field and internal heating is carried out. A weakly nonlinear stability analysis has been 
performed using the finite-amplitude Ginzburg-Landau model. This finite amplitude of convection is obtained at 
the third order of the system. The study considers three different forms of temperature modulations. OPM-out of 
phase modulation, LBMO-lower boundary modulation, IPM-in phase modulation. The finite-amplitude is a 
function of amplitude ,Tδ  frequency ω  and the phase difference θ . The effects of Tδ  and ω  on heat/mass 
transports have been analyzed and depicted graphically. The study shows that heat/mass transports can be 
controlled effectively by thermal modulation. Further, it is found that the internal Rayleigh number iR  enhances 
heat transfer and reduces the mass transfer in the system.  

 
Keywords: thermal modulation, weak nonlinear analysis, internal heating, Newtonian fluid, double diffusive 

convection.  
 
1. Introduction 
 
 The study of two-component thermohaline convection in porous media has found numerous 
applications. Due to the temperature and solutal fluctuation, there is a variation in fluid viscosity and density. 
Convection of two different density gradients with different rates of diffusion is known as thermohaline 
convection. There are many other applications related to natural convection. Some of the applications 
include are geology, astrophysics, and metallurgy. The basic and fundamental application of thermohaline 
convection is in oceanography, where heat and concentrations components exist with different gradients and 
diffuse at differing rates. There are other situations in which this convection takes place solidification of a 
binary mixture, migration of solutes in water-saturated soils, electrochemistry, crystal growth, geophysical 
system, the migration of moisture through air contained in fibrous insulation, earth’s oceans, magma 
chambers, etc.  
 Hydrodynamic thermal instability is well documented and has been investigated, among others by 
Chandrasekhar [1]. Fundamental studies of double diffusion convection were mode by Huppert et al. [2] and 
Rudraiah and Shivakumara [3]. They investigated linear and nonlinear instability of double-diffusive 
convection in the presence of an imposed magnetic field. Stability analysis was discussed in terms of the 
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critical stationary and oscillatory Rayleigh numbers. Hill [4] investigated linear and nonlinear thermal 
instability of double-diffusive convection using the Darcy model. It was found that oscillatory convection 
occurs when cγ ≤ γ  where γ  is a measure of the internal heat source. 
 Double-diffusive convection in a Maxwell fluid-saturated porous layer with an internal heat source 
was investigated by Moli et al. [5]. Linear and nonlinear stability analysis was discussed using normal mode 
and truncated representation of the Fourier series. Baines and Gill [6] investigated double-diffusive 
convection and showed that direct convection can occur. Due to several applications of thermohaline 
convection, Huppert and Turner [7] investigated sea-going oceanography related theories. Interaction 
between double-diffusive convection and an imposed vertical magnetic field was studied by Rudraiah [8]. He 
presented the studies of linear and nonlinear theories. He also discussed the cross-diffusion effect on rotating 
media and chemical reaction on thermohaline magneto convection with pattern selection. 

It is very important to understand the stability or instability of the Rayleigh-Benard convection under 
the modulation effect. It was Venezian [9] who studied the thermal modulation effect on Rayleigh-Benard 
convection. He used the normal mode and perturbation techniques to make stability analysis. He also 
obtained correction in the critical Rayleigh number as a function of wavenumber and frequency of 
modulation to determine the onset convection. Double-diffusive convection in a horizontal and sparsely 
packed porous layer was investigated by Poulikakos [10]. Similarly, Double-diffusive convection in a 
Maxwell fluid-saturated porous media was investigated by Wang and Tan [11]. The exchange of stability 
was discussed under the effect of the relaxation parameter.  

Double-diffusive convection in a viscoelastic fluid-saturated porous layer using a thermal non-
equilibrium model was investigated by Kumar and Bhadauria [12]. They studied linear stability using the 
normal mode technique and determined correction in the critical Rayleigh number. Using the truncated 
Fourier series method they investigated the local nonlinear theory. The effect of rotation on double-diffusive 
convection was investigated by Kumar and Bhadauria [13]. They presented rotational effects of double-
diffusive convection following the studies of Kumar and Bhadauria [12] for porous media. The onset of 
double-diffusive convection in a binary Maxwell fluid-saturated porous layer with a cross-diffusion effect 
was investigated by Malasetty et al. [14]. 

The onset of instability of nano-fluid saturated porous media using a Galerkin method was studied 
by Kuznetsov and Nield [15]. The onset criteria were found through critical 0cR  and the delay in the onset of 
convection due to the presence of nano-fluids was discussed. The effect of through flow and g-jitter on 
double-diffusive oscillatory convection in a viscoelastic fluid-saturated porous medium using complex 
Ginzburg-Landau model is given by Manjula et al. [16]. 

The effect of thermal modulation on double-diffusive convection was studied by Bhadauria et al. 
[17-19]. The effect of thermal modulation on double-diffusive convection [14], on magneto convection 
double-diffusive convection [15], on oscillatory double-diffusive convection [16], was investigated using 
the Ginzburg Landau model. The effect of IPM, OPM, and LBM on heat mass transport in the media was 
discused. The effect of OPM (out of phase modulation) is better than IPM (in phase modulation), and 
LBM (Lower Boundary Modulation). A similar modulation was studied by Kiran [20] where the effect of 
thermal modulation is discussed with nonlinear through-flow effects. Binary Maxwell fluid convection in 
fluid land porous layers was investigated by Narayana et al. [21,22]. Chaotic and oscillatory magneto 
convection using the Lorenz and complex GLM model was studied by Bhadauria and Kiran [23, 24]. The 
effect of temperature modulation on oscillatory convection was discussed by Bhadauria and Kiran [25]. 
This problem of convection in a viscoelastic fluid-saturated porous layer was extended to through-flow 
effects by Kiran et al. [26]. The effect of gravity modulation and nonlinear through-flow on thermal 
instability was investigated by Manjula et al. [27].  
 In many situations the internal heat source is very important, e.g., nuclear reactions, nuclear heat 
cores, nuclear energy, nuclear waste disposal, oil extractions, and crystal growth. Research on internal heat 
generation is very important. To form a better solid during solidification, it is very important to hold the 
internal energy to keep the temperature of the metal uniform. Bhadauria et al. [28] investigated the study of 
heat transport in a porous medium under gravity modulation and internal heating effects. Heat transfer results 



S.H.Manjula, P. Suresh and M.G.Rao  137 

are obtained from the Ginzburg Landau equation. The same problem was extended to time-periodic thermal 
boundary conditions and internal heating by Bhadauria et al. [29]. 
 The problem of [29] was extended to a layer of nano-fluid by Bhadauria et al. [30]. The eigenvalue 
problem is solved using the truncated Fourier series. The effect of rotational speed modulation on heat transport 
in a fluid layer with temperature-dependent viscosity and internal heat source was investigated by Bhadauria 
and Kiran [31]. The effect of temperature-dependent viscosity and internal heat source was found to enhance 
heat transfer. Kiran et al. [32,33] investigated the effect of internal heating on nanofluid convection h. The 
effect of internal heating on magneto-double diffusive convection in a viscoelastic fluid-saturated porous layer 
was studied by Altawallbeh et al. [34]. The study of linear and weakly nonlinear thermohaline convection in a 
viscoelastic fluid-saturated anisotropic porous medium with internal heat source was investigated by Srivastava 
and Singh [35]. The onset of thermal instability was investigated through the critical Rayleigh number. Heat 
and mass transfer results were obtained through the Nusselt and Sherwood numbers. 
 Bhadauria and Kiran [36] investigated weakly nonlinear double-diffusive convection in temperature-
dependent viscous fluid-saturated porous media under temperature modulation. They derived the Ginzburg 
Landau equation and found the heat and mass transfer under three types of thermal modulations. The same 
problem was extended to gravity modulation by Bhadauria and Kiran [37]. They plotted the streamlines, 
isotherms, and isohalines to represent the nature of convection. 
The effect of internal heating on double-diffusive convection in a couple stress fluid-saturated anisotropic 
porous medium was investigated by Srivastava et al. [38]. The linear stability analysis was mode by a critical 
Rayleigh number for both stationary and oscillatory convection. Through local nonlinear stability analysis, 
heat mass transfer was quantified. The effect of internal solutal Rayleigh number and rotation on weakly 
nonlinear [41-45] thermal instability was studied by Kiran [39] and Kiran and Manjula [40]. The rotation and 
negative internal solutal Rayleigh number reduce the mass transfer in the system (see: Malkus and Veronis 
[41]). Their studies gave new results and were compared with Keshri et al. [42]. Using the Landau model 
[43, 44], the effect of thermal modulation [45-48] on double-diffusive convection in the presence of a 
magnetic field was investigated by Bhadauria and Kiran et al. [49]. It was found that Chandrasekhar number 
Q reduces heat transfer and the Lewis number, magnetic Prandtl number enhance heat transfer in the system. 
 The above literature shows that no study reports the effect of the applied magnetic field on double-
diffusive convection under thermal modulation [50-54]. Since the applied magnetic field with thermal 
modulation suppresses the heat mass transfer one needs to study thermohaline convection with an applied 
magnetic field. This motivates us to investigate the effect of internal heating and thermal modulation on 
double-diffusive convection in the presence of an applied magnetic field. 
 
2. Mathematical model 

 
 We consider a Newtonian fluid layer extended infinitely in the x-direction and confined between two 
parallel horizontal plates at z 0=  and z d= , a distance d apart. We consider double-diffusive convection 
with an upward vertical transport of heat and salt mixture in the layer. The configuration of the physical 
model is shown in Fig.1. A Cartesian frame of reference is chosen in which the origin lies on the lower plate 
and the z-axis goes vertically upward. Further, the Boussinesq approximation is employed to consider the 
density variations caused by gradients in the composition of the fluid. With the above assumptions, the 
required mathematical model is given by Kiran et al. [57]: 
 
  q 0∇⋅ = , (2.1) 
 

  ( ) p
t

2 2 2
e 0

0 0 0

q 1q q g q B q∂ ρ μ+ ⋅ ∇ = − ∇ + − ∇ − σμ
∂ ρ ρ ρ

      , (2.2) 
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  ( ). 2
s

S q S S
t

∂ + ∇ = κ ∇
∂


, (2.4) 

 
  ( ) ( )0 T 0 S 01 T T S S ρ = ρ − α − + α −   (2.5) 
 
where q  is the velocity ( ), ,u v w , μ  is the viscosity, Tκ  is the thermal diffusivity tensor, sκ  is the solutal 
diffusivity tensor, T  is the temperature, Tα  is the thermal expansion coefficient, γ  is the heat capacity and Q  
is the internal heat source. For simplicity, γ  is taken to be unity in this paper, ρ  is the density, while 0ρ  is the 
reference density, eμ  is the magnetic permeability, 0B  is the strength of the applied magnetic field.  
 

 
 

Fig.1. The physical configuration of the problem. 
 
The externally imposed thermal boundaries are: 
 

  ( ) cos2
0 T

TT T 1 t
2

Δ  = + + χ δ ω  ,         z 0= , 

   (2.6) 

  ( )  cos  2
0 T

TT T 1 t
2

Δ  = − − χ δ ω + θ  ,      z d= ,  

 
here Tδ  is the small amplitude of modulation, ω  is the frequency of modulation and θ  is the phase 
difference. The externally imposed solutal boundary conditions are: 
 

  0
SS S

2
Δ= − ,      z 0= , 

   (2.7) 

  0
SS S

2
Δ= + ,       z d=   

 
where TΔ  is the temperature difference, ΔS is the solutal difference across the fluid layer, 0T  and 0S are 
reference temperature and concentration. The modulated temperature Eq.(2.6) field consists of steady and 
time-dependent parts given by Venezian [7]. Slow time variations are considered to prevent exponential 
growth of the amplitude at the steady-state.  
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2.1. Conduction state  
 
 In this state the fluid and concentrations are at rest, the transport of heat and mass in a conduction 
state only. In this state, the physical variables are of the form: 
 
  ( ) ( ) ( ) ( ) ,  ,  , ,  ( ) ,   , b b b b bq 0 0 0 z p p z T T z S S z= ρ = ρ = = = . (2.8) 
 
Substituting Eq.(2.8) into Eqs (2.1)-(2.5), we get the following relations which help us to define the basic 
state pressure, temperature, and solute: 
 

  b
b

dp g
dz

= −ρ  , (2.9) 

 

  ( ) ( )
2

b 0 b
T b 02

d T T TQ T T
tdz

− ∂
κ + − =

∂
, (2.10) 

 
  ( )b 0 T b 01 T T ρ = ρ − α −  , (2.11) 
 

  
2

b
2

d S 0
dz

=  (2.12) 

 
where b refers the basic state. Equations (2.10) and (2.12) are solved for ( )bT z  and ( )bS z  subject to the 
boundary condition given in Eq.(2.6) and Eq.(2.7) 
 
  ( ) ( ) ( ) , Re , 2

b T 1T z t T z T z t= +χ δ    , (2.13) 
 

  ( ) ΔSb 0
zS z S 1
d

 = + − 
 

. (2.14) 

 
2.2. Perturbed state 
 
At this state, the disturbances impose on the conduction state, and then the physical variables take the form: 
 
  /

bq q q= +  ,      /ρ ρ ρb= + ,      /p p pb= + ,     /T TbT = + ,     /S S S .b= +  (2.15) 
 
Substituting Eq.(2.15) in Eqs (2.1)-(2.4), and using the basic state solution, we get: 
 
  /q 0∇ ⋅ = , (2.16) 
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  ( )
/

/ /S . S S2
sq

t
∂ + ∇ = κ ∇
∂

 . (2.19) 

 

For two-dimensional convection, one can introduce a stream function ψ  as ,
z x

u w∂ψ ∂ψ′ ′= = −
∂ ∂

. Non-

dimensional physical variables are: ( ) ( )* * *, , , ,x y z d x y z= , *2
s d tτκ = , *

sdq q= κ  , *
sψ = κ ψ ,

* * ,  T T T S S S′ ′= Δ = Δ  and *, 2
sdω = κ ω  then eliminating the pressure term and finally dropping the asterisk, 

we obtain the non-dimensional governing system as: 
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,
,
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The non-dimensional parameters in the above equations are: 
 

Thermal Rayleigh number Ra
3

T
T

T

g Tdα Δ=
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ν

 

Solutal Rayleigh number Rs
3

S

S
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, 
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T
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κ
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The term bT
z

∂
∂

 is given in Eq.(2.21) and simplified: 
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The reader may refer to the studies of Bhadauria et al. [29] and Manjula et al. [48, 56] for results of Eq 
(2.23). Since we study slow variations in heat and mass transfer the time is re-scaled as  2 2tτ = χ . The 
nonlinear system of partial differential equations (2.20)-(2.22) is solved using the following stress free 
isothermal boundary conditions: 
 

  
z

2

2T S 0∂ ψψ = = = =
∂

      at     z 0=      and      z 1= .  (2.24) 

 
3. Finite amplitude equation and heat transport 
 
 Now consider the following asymptotic expansions, suggested by Venezian [7], Malkus and Veronis 
[41], Manjula et al. [43] and Kiran et al. [44], (it is a formal series of functions which has the property that 
truncating the series after a finite number of terms provides an approximation to a given function) introduced 
in Eqs (2.20)-(2.22) to resolve the nonlinearity: 
 
  ( ) ( ), , , χ  , , ,  χ ( , , , )  χ ( , , , )0 1 2

T 0c 1 1 1 2 2 2 2T S Ra 0 0 0 R T S 0 T S Rψ = + ψ + ψ + …   (3.1) 
 
where 0cR  is the critical Rayleigh number at which instability takes place. The system equations (2.20)-
(2.22) will be solved for different orders of χ . 
 
3.1. Lowest order case ( )χ1  

 
This order is just like a linear problem because no nonlinear term appears in this case: 
 

  b

x x
T
z x

x Le

2 2 4
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1
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i 1

1
2

Ha R Rs
0

R 0 T 0
S 010

∂ ∂ ∇ − ∇ − ∂ ∂ ψ    
∂ ∂     − −∇ − =    ∂ ∂        ∂ − ∇ ∂ 

.  (3.2) 

 
The following solutions are assumed according to the boundary conditions (given in Eq.(2.24)): 
 
  ( ) ( ) ( )sin sin1 cA k x zψ = τ π , (3.3) 
 

  ( ) ( ) ( ) ( )cos sin
2

c
1 c2 2

R i

4 kT A k x z
4 R

− π
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  ( ) ( ) ( )sin cosc
1 c2

k LeS A k x z= − τ π
β

, (3.5) 

 
where 2 2

R iRδ = β −  and 2 2 2
ckβ = + π . The critical value of the Rayleigh number for the onset of stationary 

convection is given by: 
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( )2 4 2 2 2R R

0c 2 2
1 c 1

Ha Rs LeR
I k I

δ β + β δ= −
β

 (3.6) 

 

where sin
c

2
k

2b
1

0

dTI zdz
dz

π

= π  is the thermal modulation coefficient. 

 
3.2. Second order case ( )χ2  

 
In this order, the nonlinear effects enter the system through the Jacobian term of Eqs (2.20)-(2.22). We get 
the following relation: 
 

  b
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T
z x
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2 2 4
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1 1
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  ( )
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,
,

1 1
23

S
R

x z
∂ ψ

=
∂

. (3.10) 

 
The second order solutions subjected to the boundary conditions Eq.(2.24) are obtained as: 
 
  2 0ψ = , (3.11) 
 

  
( )

( ) ( )sin
3 2

2c
2 22 2

R i

2 kT A 2 z
4 R

− π
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  ( ) ( )sin
2 2

2c
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8

−
= τ π

πβ
. (3.13) 

 
The horizontally averaged Nusselt number for the stationary mode of convection is given by: 
 

  ( )
( )

    
Nu

    
heat transfer dueto conduction convection

heat transfer dueto conduction
+

= . (3.14) 
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Substituting the expressions of 2T  and bT  in the Eq.(3.14) and simplifying, we get: 
 

  
( ) ( )

( )Nu
4 2

2c i
22 2

R i i i

8 k sin R
1 A

4 R R cos R 1

π
= + τ

δ π − +
. (3.15) 

 
The horizontally averaged Sherwood number for the stationary mode of convection is given by: 
 

  ( )
( )

    
Sh

    
masstransfer dueto conduction convection

masstransfer dueto conduction
+

= . (3.16) 

 
Substituting the expressions of S2 and Sb in Eq.(3.16) and simplifying, we get: 
 

  ( )LeSh
2 2

2c
2

k1 A
4

= + τ
β

. (3.17) 

 
3.3. Third order case ( )χ3  

 
At this stage, the following system is obtained involving many terms in RHS: 
 

  b

x x
T
z x
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2 2 4
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2 1 1 2 1
32 T 2

T TTR f∂ ∂ψ ∂ ∂ψ ∂ψ∂= − + − − δ
∂ ∂ ∂ ∂ ∂ ∂
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τ z x

2 1
33

SSR ∂ ∂ψ∂= − +
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. (3.21) 

 
Substituting the first and second order solutions in Eqs (3.19)-(3.21), 31R , 32R  and 33R  will be simplified. 
Using the following solvability condition [27, 29, 39, 43-44] we derive the Ginzburg-Landau equation: 
 

    ( )
c

2
k1

31 1 32 1 33 1
0 0

R R T R S dxdz 0

π

ψ + + =     (3.22) 

 

where   ( ), ,1 1 1T Sψ   is the solutions set of first order adjoint system; 
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R i
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82 4 R

π β + β
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βδ π −
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1
2

2 2
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Equation (3.23) is a Ginzburg-Landau equation (GLE) also known as the Bernoulli equation. Obtaining its 
analytical solution is difficult due to its non-autonomous nature. So, it has been solved numerically using 
NDSolve of Mathematica 17 with suitable initial amplitude ( )  0A 0 = α . In our calculations, we use

,2 0cR R=  to keep the parameters to a minimum. The Nusselt number (3.15) and Sherwood number (3.17) is 
evaluated numerically using the value of ( )A τ  while solving Eq.(3.23).  
 
4. Results and discussions 
 
 We have investigated the effects of thermal modulation [50-55] and internal heating on double-
diffusive stationary convection. The layer is confined with electrically conducting Newtonian fluid. The 
Ginzburg-Landau model was employed to study finite-amplitude convection. Our aim is to analyze 
heat/mass transfer in the system. The non-autonomous amplitude equation (3.23) is solved numerically using 
the Runge-Kutta 4th order method. The numerical results for Nu/ Sh  and the effect of each parameter on 
heat/mass transport are reported in Figs 2-12. It is found that the values of Nu/ Sh  start with 1 showing the 
conduction state. Also, Nu/ Sh increases with time showing the convection state and further in time the 
system achieves its uniform nature. Now we discuss the effect of different parameters on Nu/ Sh . 
 

 
Fig.2. Variation of the thermal Rayleigh number for various values of the internal heat parameter iR . 

 
We discuss the results in two parts (i) marginal stability curves (ii) heat and mass transfer. The 

graphs of neutral stability curves for various parameters are shown in Figs 2 and 3. The parameter values are 
fixed at . ,  Pr ,  Ha ,  Le . ,  Rs ,  .i 1R 0 4 1 2 1 5 10 0 1= = = = = δ = , and 4ω = . Marginal stability curves are 



S.H.Manjula, P. Suresh and M.G.Rao  145 

drawn based on the critical Rayleigh number 0cR  (defined in Eq.(3.6))at which the onset of convection takes 
place. 
In Fig.2 the stability curves have been depicted. Upon increasing the value of the internal Rayleigh number 

iR  and Lewis number Le  the thermal Rayleigh number decreased, resulting in advance of the onset of 
convection. The corresponding stability curves are presented in Figs 2a and 2b. These are the results were 
obtained by Srivastava et al. [35] and Manjula et al. [48,56,57] for convection in porous media. The effect of 
the Hartmann number and solutal Rayleigh number on 0cR  versus wavenumber is presented in Fig. 3.  
 

 
Fig.3. The stability curves under the effect of the magnetic parameter Ha . 

 
Upon increasing the value of Ha, the critical Rayleigh number 0cR  increases, thus the effect of Ha  is to 
stabilize the system (see Fig.3a). This indicates that the applied magnetic field is to suppress the stability. 
The trend is reversed for the solutal Rayleigh number Rs , where 0cR  decreases upon increasing the values 
of Rs  showing the destabilizing effect (see Fig.3b). 
 

 
 

Fig.4. The effect of the Hartmann number on Sh  and Nu . 
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 Now we present our results corresponding to a weakly nonlinear theory. Using a weakly nonlinear 
theory the Ginzburg-Landau equation [27, 29, 39, 43-45, 60-65] (given in Eq.(3.23)) is derived. The 
modulation effect is considered at third order, where the solvability condition is used for the existence of 
GLE. Using this equation heat and mass transfer results are presented in terms of the Nusselt and Sherwood 
numbers given in Eqs (3.15 and 3.17). Since the results are almost similar for both Nu  and  Sh , first we 
present the results for Nu . In Fig.4 (a), the effect of the Hartmann number (see Keshri et al. [42]) on Sh  is 
presented. It is a ratio of electromagnetic force to the viscous force and measures the strength of the magnetic 
force to the viscous force. An increment in Ha  decreases the value of Sh  showing mass transfer reduction. 
The results corresponding to heat transfer are presented in Fig.4 (b). The same effect of Ha  can be seen, but 
mass transfer levels are more than these of heat transfer rates. To see the results clearly the same results 
repeated in Fig.5(b). These results are compared with Kiran et al. [58, 59].  

Figure 5(a) illustrates that the effect of the internal heat parameter iR  on Nu , it is clear from the 
figure that heat transfer increases upon increasing the value of iR  from .0 4  to .0 9 . The reason behind this is 
to decrease the value of the critical thermal number 0cR  with an increment of iR  for stationary case (see 
Fig.(2)a). Therefore, the effect of internal heat parameter is to destabilize the system (also see the studies of 
[60-65]). These results confirm the studies of Kiran et al. [32,33] and are comparable with the results of 
Kiran et al. [40,45,57] for solutal internal Rayleigh number iS . Figure 5(b) depicts the effect of the internal 
heat parameter iR  on Sh , it is clear from the figure that mass transfer decreases upon increasing the value 

iR  from .0 4  to .0 9 . Therefore, the effect of the internal heat parameter is to stabilize the system. 
 

 
 

Fig.5. The effect of the internal Rayleigh number on Sh  and Nu . 
 

In Fig.6(a) the effect of the Lewis number ( )Le  on Sh is depicted. This Lewis number is used to 
characterize the flows of fluids where there is a simultaneous momentum and diffusion transfer. It is found that 
mass transfers enhance in the system drastically for lower values of Le . A similar offer of Le on Nu  can be 
seen but there is a very slow increment therein (see Fig.6(b)). The effect of the Prandtl number Pr  on Sh is 
presented in Fig.7(a). It defines the ratio of momentum diffusivity to thermal diffusivity. When Pr  is near to 1 
then both momentum and heat dissipate through the fluid at about the same rate. And when Pr ,1<<  thermal 
diffusivity dominates. For large values, Pr 1>> , the momentum diffusivity dominates. In this paper, we 
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consider Pr  value around 1, and Fig.7(a) and 7(b) show the enhancement in mass and heat transfer upon 
increasing Pr . These results confirm the results of Bhadauria and Kiran [37] and Manjula et al. [43,55, 56]. 
 

 

 
Fig.6. The effect of the Lewis number Le  on mass transport (a) and heat transport (b). 

 

 
Fig.7. The effect of the Prandtl number on mass transport (a) and heat transport (b). 

 

 
 

Fig.8. The effect of amplitude of modulation on mass and heat transfer. 
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It is found that incremental values of Rs  enhance Nu/ Sh  showing that the rate of heat/mass transfer 
increases. In general, Rs  effect must reduce heat/mass transfer, due to the effect of iR  and nonlinearity there 
is a reverse trend of Rs . The corresponding results may be observed in the following studies [35-38]. 

 

 
 

Fig.9. The effect of frequency of modulation on mass and heat transfer. 
 

 
 

Fig.10. Three different profiles of thermal modulation. 
 

The effect of amplitude and frequency of modulation is presented in Figs 8 and 9. The effect of 
amplitude of modulation is to increase Nu/ Sh , and leads to heat/mass transport (see Figs 8). The effect of 
frequency of modulation is to decrease Nu/ Sh  (given in Fig.9). For high frequency of thermal modulation, 
the effect of modulation disappears altogether. It is observed that the amplitude of modulation enhances the 
heat transfer but an opposite effect is observed for .ω  These results agree with the linear theory of Venezian 
[9], Malashetty et al. [14] and other studies [46-52] for gravity modulation [61-65]. The effect of three 
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different temperature profiles OPM, LBMO and IPM have been compared in Fig.10. It is clear that the rate 
of mass and heat transfer follows the following order:   

 
  [ ] [ ] [ ]/ / /OPM LBMO IPMSh Nu Sh Nu Sh Nu> > . 
 

 
 

 
 

 
 

Fig.11. Isohalines for various values of Le  at instances .1 0τ =  (a) Le .0 5= ; (b) Le . ;1 5=  (c) Le . ;2 5= (d) 
Le . ;3 5=  (e) Le . ;4 0=  (f) Le . .5 0=  
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In Fig. 11, isotherms are depicted respectively at slow time . ,  . ,  . ,  . ,  . ,  . ,  .s 0 0 0 5 1 0 1 5 2 0 2 5 3 0=  at .0 5χ = . The 
figures shows that when the time .1 0τ =  isotherms are straight lines (see Figs.11a,b) showing the conduction 
state. However, as time passes the isotherms lose their evenness. This shows that convection is taking place in the 
system, and becomes faster on further increasing the time 𝜏. However, the system achieves its steady state beyond 

.1 5τ =  as there is no change in isotherms (see Figs 11d-f.). These results of isotherms may be compared with the 
studies of Manjula et al. [56], Kiran et al. [32, 45, 57] and Bhadauria and Kiran [37].  
 

 
 

 
 

Fig.12. Isotherms for various values of iR  at instances .s 1 0=  (a) .iR 0 5=  (b) .iR 1 0= ; (c) .iR 1 5= ; (d) 
.iR 2 0= . 

 
 The effect of iR  on isotherms is presented in Fig. 12. It is clear that the effect of iR  is to change the 
evenness of isotherms iR . This indicates that iR  destabilizes the system and enhances the heat transfer. 
Similarly, the effect of Le on isohalines can be seen in Fig.12. As the value of Le  varies from 0  to 5  for a 
fixed instant of time .1 0τ = , isohalines lose their cuteness and show the instability of the flow with mass 
transport.  
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5. Conclusions 
 

The effect of thermal modulation and internal heating on double diffusive convection has been 
investigated by performing a weakly nonlinear stability analysis resulting in the Ginzburg-Landau equation 
[46-52]. The following conclusions are made from the study.  
1. The effect of Pr, Rs  and Le  is to enhance heat and mass transfer. 
2. The effect of iR  is to enhance heat transfer and diminish mass transfer.  
3. The effect of the Hartmann number ( )Ha  is to decrease heat and mass transfer.  
4. The effect of amplitude Tδ  of modulation is to enhance heat and mass transfer. 
5. Lower values of ω  enhance heat and mass transfer. But, for higher values of ω  the trend is reversing [48-52]. 
6. Two cases OPM and LBMO are effective modes for heat and mass transfer.   
7. The order of heat and mass transfer for three types of modulation is given  

 
  [ ] [ ] [ ]heat and mass heat and mass heat and massOPM LBMO IPM> > . 
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Nomenclature 
 
 A  − amplitude of convection  
 D  − depth of the fluid layer  
 b  − basic state  
 c  − critical 
 g  − acceleration due to gravity  
 Ha  − Harman number 
 k  − wave number  
 k  − vertical unit vector 
 Le  − Lewis number 
 p  − reduced pressure 
 Pr  − Prandtl number 
 q  − fluid velocity  
 TRa  − thermal Rayleigh number 
 iR  − internal Rayleigh number 
 Rs  − solutal Rayleigh number 
 0cR  − critical Rayleigh-number 
 T  − temperature  
 t  − time 
 Tα  − coefficient of thermal expansion  
 Sα  − solute expansion coefficient 
 Tδ  − amplitude of thermal modulation  
 θ  − phase angle 
 Tκ  − effective thermal diffusivity 
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 μ  − dynamic viscosity of the fluid 
 eμ  − magnetic permeability 
 ν  − kinematic viscosity 
  ρ  − fluid density 
 τ  − slow time (dimensionless) 
 χ  − perturbation parameter 
 Ψ  − stream function 
 ω  − thermal modulation frequency  
 /  − perturbed quantity 
 * − dimensionless quantity 
 0  − reference value 
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