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In this study, the spectral perturbation method and the spectral relaxation method are used to solve the nonlinear 
differential equations of an unsteady nonlinear MHD flow in the presence of thermal radiation and heat generation. 
The SPM is mainly based on series expansion, generating series approximation coupled with the Chebyshev 
spectral method. The numerical results generated using the spectral perturbation method were compared with those 
found in the literature, and the two results were in good agreement. 
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1. Introduction 

 
The investigations of boundary layer flow and heat transfer problems due to a stretching sheet have 

attracted much attention of researchers due to their applications in various engineering and manufacturing 
processes [1-3]. Such engineering applications include cooling of metallic sheets and aerodynamic extrusion 
of plastic sheets. In addition, applications in manufacturing processes occur in glass blowing, metal extrusion, 
the spinning of metal, fiber spinning, continuous casting, and constant stretching of plastic films. Magneto-
hydrodynamics (MHD) flow also plays a crucial role in the metallurgical process, such as annealing, drawing, 
and copper wire thinning. Literature surveys show that many researchers have shifted their attention towards 
unsteady flows because their solutions often give a more explicit physical meaning of the problem. The 
equations that will be examined in this study are obtained by considering unsteady nonlinear MHD flow in the 
presence of thermal radiation and heat generation. Radiative heat transfer plays a very crucial role in gas 
turbines and various propulsion devices for aircraft, manufacturing industries for the design of reliable 
equipment, space vehicles, missiles, and satellites. Based on these applications, Olanrewaju et al. [4] 
investigated numerically an unsteady three-dimensional MHD flow and mass transfer in the presence of 
thermal radiation using the sixth-order Runge-Kutta-Fehlberg method with shooting technique. Olanrewaju 
and Makinde [5] investigated unsteady convection with chemical reaction and radiative heat transfer past a flat 
porous plate moving through a binary mixture using the fourth-order Runge-Kutta integration scheme along 
with shooting technique. Abbas et al. [6] dealt with the effects of radiation and magnetic field on the mixed 
convection stagnation-point flow over a vertical stretching sheet in a porous medium. The series solutions of 
the coupled nonlinear system are obtained using an analytical technique, namely the homotopy analysis method 
(HAM). A considerable amount of literature now exists that employed the perturbation series approach in the 
solution of unsteady flows. These investigations include the study of Seshadri et al. [7] who used the 
perturbation series approach for the solution of an unsteady mixed convection flow along a heated vertical 
plate. Nazar et al. [8] used the perturbation series approach to obtain first-order perturbation approximation of 
the solution of an unsteady boundary layer flow due to a stretching surface in a rotating fluid. Liao [9] observed 
the limitation of the perturbation series approach used in [7,8], i.e. the perturbation solutions are valid only for 
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a minimal time. An analytical approach used as an alternative approach to address some of the limitations of 
the perturbation method was proposed by Liao [9]. The approach is based on the homotopy analysis method 
(HAM) and gives results that are uniformly valid for all time. Many researchers have ever since then adopted 
the method in solving unsteady flow problems. These include Kumari and Nath [2], Hayat et al. [3], Liao [9], 
Mehmood et al. [10], Xu et al. [11], etc. According to Liao [9], one attractive advantage of the homotopy 
analysis method (HAM) over the standard perturbation method for the solution of unsteady boundary layer 
flow problems is that the (HAM) provides flexibility in the choice of initial approximation and linear operator 
which can be carefully chosen so that the higher-order approximation can be integrated analytically. This HAM 
advantage contradicts the conclusion earlier drawn by researchers about the perturbation methods that 
analytical solution cannot be obtained beyond first-order approximation for higher-order perturbation 
equations in unsteady flow problems. In the application of the HAM technique, the nonlinear PDEs describing 
the unsteady flow problems are reduced to an infinite number of linear ordinary differential equations that are 
governed by an auxiliary linear operator that can be used to control the convergence of the solution. The 
primary aim of this study is to extend the analysis of Awad et al. [12] by introducing the thermal radiation and 
heat generation effect. This is because of the important space technology and processes involving high 
temperatures. The test equations will be solved using the spectral perturbation method (SPM) and spectral 
relaxation method (SRM). The use and accuracy of the SPM have been demonstrated for the solution of MHD 
stagnation point flow and heat transfer towards a stretching sheet and unsteady two-dimensional boundary 
layer flow problem. It was shown in previous research that the SPM could be used as an alternative numerical 
approach for solving both nonlinear ODEs and PDEs. The SPM combines the use of the standard perturbation 
approach with the Chebyshev pseudo-spectral method to generate a numerical solution of higher-order 
perturbation equations describing the flow not possible to solve analytically. With the SPM, solutions to partial 
differential equations can be obtained by applying discretization only in the space direction. Applying 
discretization only in the space direction and integrating using the Chebyshev spectral collocation method 
makes the SPM computationally efficient. The Chebyshev pseudo-spectral method is used because of its high-
level accuracy. Also, using spectral methods, only a few grid points are required to yield accurate results. 
Using the spectral method to integrate the perturbation equations, very accurate solutions that are valid for all 
time domains are obtained. Numerical simulations on the equations are conducted using the spectral 
perturbation method (SPM). Results generated using the spectral perturbation method SPM are compared and 
validated with the published work of Awad et al. [12], who used the spectral quasilinearisation method 
(SQLM) and the spectral homotopy analysis method (SHAM), and the methods show good agreement. A 
sizeable amount of literature now exists based on the use of the SPM for the solution of fluid mechanics based 
ordinary differential equations (ODEs) and partial differential equations (PDEs) problems, (see for example, 
Agbaje and Motsa, [13]; Motsa [14]; Agbaje et al. [15]; [16]. The results obtained show that the SPM can be 
used efficiently to solve systems of partial differential equations principally those defined under the William 
and Rhyne [17] transformation. 

In this work, we investigate unsteady nonlinear MHD flow in the presence of thermal radiation 
described by systems of partial differential equations PDEs. The accuracy of the method was shown by 
validating the SPM results against the results obtained from the literature, and the results were found to be in 
good agreement. The study also sought to investigate the accuracy and efficiency of the SPM. This present 
work, however, shows that accurate results can be obtained using the perturbation method. 
 
2. Problem Formulation 

 
According to Awad et al. [12], the unsteady nonlinear convection of a fluid over a stretching flat plate 

is investigated. Initially, ( )t 0= , both the fluid and stretching plate are kept at a constant temperature wT  and 
concentration C∞  where  wT T∞>  correspond to the heated plate and  wT T∞<  is for a cooled plate. It is assumed 
that at t 0= , the velocity of the stretching plate is  wu ax= , where a  is a positive constant. From the Boussinesq 
approximation, density is related to the temperature and concentration by the equation  
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  ( ) ( ) .0 T C1 T T C C∞ ∞ρ = ρ  − β − + β −    (2.1) 
 

In the case of thermal stratification and heat released by viscous dissipation, wall jet like profiles 
induce significant changes in density gradients, and the density depends on the temperature or temperature and 
concentration in a nonlinear form: 

 
  ( ) ( ) .2

T 11 T T T T∞ ∞ ∞
 ρ = ρ − β − + β −
 

 (2.2) 

 
The formulation below was used by Karcher and Müller [18] to define the nonlinearity of the 

relationship between the density, temperature and concentration: 
 

  ( ) ( ) ( )2
0 1 21 T T T T C C∞ ∞ ∞ ∞

 ρ = ρ − β − − β − − β −
 

 (2.3) 

 
where ∞ρ  is the constant fluid density, T∞  and C∞  are the fluid temperature and solutal concentration, 
respectively, 0ρ  and 2ρ  are the coefficients of the thermal and solutal expansion, and 1ρ  connotes the 
nonlinear coefficient of thermal expansion. The natural nonlinear convection in a non-Darcy porous medium 
was investigated by Partha [19] using a temperature-concentration-dependent density relation in the form 

 
  ( ) ( ) ( ) ( ) .2 2

0 0 1 2 3T T T T C C C C∞ ∞ ∞ ∞
 ρ = ρ β − − β − − β − + β −
 

 (2.4) 

 
With the usual Boussinesq and the boundary layer approximations, the governing equations are written in the 
form: 

 

  ,u v 0
x y

∂ ∂+ =
∂ ∂

 (2.5) 

 

  
( )

( ) ( )

( )

,

2
2

0 12

2
2 2

u u u uu v T T T T
t x y y

C C C C g

∞ ∞

∞ ∞

∂ ∂ ∂ ∂  + + = ν + β − + β − + ∂ ∂ ∂ ∂

 + β − + β −
 

 (2.6) 

 

  ( ) ,
2

0r
m 2

p p

QqT T T T 1u T T
t x y C y Cy ∞

∂∂ ∂ ∂ ∂+ + ν = α − + −
∂ ∂ ∂ ρ ∂ ρ∂

 (2.7) 

 

  
2

2
C C C Cu D
t x y y

∂ ∂ ∂ ∂+ + ν =
∂ ∂ ∂ ∂

 (2.8) 

 
where ,t u  and v  are the time, fluid tangential velocity and normal velocity components along the x  and y  
directions, respectively, T  and C  are the local fluid temperature and local solute concentration across the 
boundary layer, respectively, g  is the acceleration due to gravity, ρ  is the fluid density, ν  is the kinematic 

viscosity, 0
m

p

K
C

 
α =   ρ 

 is the thermal diffusivity with 0K  being the fluid thermal conductivity ratio and pC  
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the specific heat at constant pressure of the fluid, 0Q  is the heat generation constant, D  is the mass diffusivity, 
σ  is the fluid electrical conductivity, 0β  and 1β  are the thermal expansion coefficients and 2β  and 3β  are the 
solutal expansion coefficients. 

The appropriate initial conditions are written as  
 

  :    , , , ,  , .w wt 0 u 0 v 0 T T C C x y< = = = = ∀  (2.9) 
 
The boundary conditions are:  
 
   : ,    ,        ,    at    ,w wt 0 u ax v 0 T T C C y 0≥ = = = = =  
   (2.10) 
   : ,    ,        as    ,t 0 u 0 T T C C y∞ ∞≥ → → → → ∞  
 
where a , is a constant. 
The stream function ψ  is introduced and defined as:  
 

 ,    .u v
y x

∂ψ ∂ψ= = −
∂ ∂

 (2.11) 

 
Further, it is convenient to choose time scale ξ  so that the region of the time integration can be finite. Such 
transformations have been introduced by Williams and Rhyne [17] in a related study. The transformations are 
expressed as 
 

 ( )exp , ,1 btξ = − −τ τ =  (2.12) 
 

with b  a positive constant and t  is the time variable. The Williams and Rhyne’s [17] transformations in 
Eq.(2.12) are used to convert it from the infinite (original) time scale 0 ≤ τ < ∞  to the finite scale 0 1≤ ξ ≤  so 
that the interval of integration is collapsed from an infinite domain to a finite domain. 

The similarity variables given in [12] is used and written below as 
 

  ( ) ( ) ( ),  , , , , , .
w w

T T C Ca y a xf
T T C C

∞ ∞

∞ ∞

− −η = ψ = νξ ξ η θ ξ η = φ ξ η =
νξ − −

 (2.13) 

 
Equations (2.6)-(2.8) along with the boundary conditions (2.10) can be presented in the form: 
 

  
( )

( ) ( ) ( )

( ')

,

2

b

f 1 f ff f
2

f1 N 1 1

η  ′′′ ′′ ′′+ − ξ + ξ − + 
′∂+λξ  + αθ θ + + σφ φ = ξ − ξ  ∂ξ

 (2.14) 

 

  ( ) ( )Pr Pr He Pr ,R4N1 1 f 1
3 2

η ∂θ + θ + − ξ θ′ + ξ θ + ξθ = ξ − ξ  ∂ξ 
′ ′ ′  (2.15) 

 

  ( ) ( )Sc Sc Sc ,
Le
1 1 f 1

2
η ∂φ′′ ′ ′φ + − ξ φ + ξ φ = ξ − ξ

∂ξ
 (2.16) 
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subject to the boundary conditions  
 

  
( ) ( ) ( ) ( )

( ) ( ) ( )

, , , , , , , ,   

, , , , , .

f 0 0 f 0 1 f 0 0 1

0 0 1 0

′ξ = ξ = ξ ∞ = θ ξ =

θ ξ ∞ = φ ξ = φ ξ ∞ =

′

 (2.17) 

 
In the above equations, prime denotes the derivative with respect to η  and the parameters are defined as 
 

  
( ) ( ) ( )Δ

Ra , ,
ˆ ˆ ˆ

,
f 0 3 w1 w

x
m 0 2

1 g f Tx T T
a

∞ ∞ ∞∞
− φ β ρ β φ − φβ −

= γ = σ =
α β β

 

 

  
( )( )

( )( )

ˆ ˆ

ˆ
, Pr , Sc , 

p w
b

m B0 w

N
Df 1 T T

∞ ∞

∞ ∞

ρ − ρ φ − φ ν ν= = =
αβ ρ ∞ − φ −

 (2.18) 

 

  
*

*
RaLe , Pe , ,   

3
m w x

x R
B m x 0

u x 16 TN
D Pe 3k K

∞α σ= = λ = =
α

 

 
where Ra x  is the Rayleigh number, γ  is the nonlinear temperature parameter, bN  is the buoyancy parameter, 

RN  the thermal radiation parameter, Pr  is Prandtl number, He  the heat generation parameter, Sc  is Schmidt 
number, Pex  is the Peclet number, and Le  the Lewis number. The skin friction and heat and mass transfer 
coefficients are described by the local skin friction coefficients, Nusselt number Nu , and the Sherwood 
number Sh  defined as 
 

  , , .w w m m
y 0 y 0 y 0

u T Cq q D
y y y= = =

∂ ∂ ∂τ = μ = −α = −
∂ ∂ ∂

 (2.19) 

 
The non-dimensionless form of the skin friction coefficient, the reduced Nusselt number, and the 

reduced Sherwood number are:  
 

  ( ) ( ) ( )/ /Re , ,  Re Nu , , Re Sh , .
1 1 1 1

1 2 1 22 2 2 2
x f x xC f 0 0 0

− −′′ξ = ξ ξ = −θ ξ ξ = φ ξ′−′  (2.20) 
 
For the initial unsteady state flow, when 0ξ = , corresponding to 0τ = , Eqs (2.14)-(2.16) become:  

 

  , Pr , Sc ,
Le

R4N 1f f 0 1 0 0
2 3 2 2
η η η ′′′ ′′ ′ ′′ ′+ = + θ′ + θ = φ + φ = 


′


 (2.21) 

 
subject to the boundary conditions,  
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( ) ( ) ( ) ( )

( ) ( ) ( )

,  , , , 

, , .

f 0 0 f 0 1 f 0 0 1

0 0 1 0

′ ′= = ∞ = θ =

θ ∞ = φ = φ ∞ =
 (2.22) 

 
Equations (2.21) alongside with the boundary conditions (2.24) admit closed form analytical solutions of the 
form:  

 

  ( ) ( ),  erfc exp , , erfc ,
2

R

2 3Prf 0 1 0
2 4 2 3 4N

    η η η η = η + − − θ η =        +π        
 

   (2.23) 

  ( ) LeSc , erfc .0
2

 ηφ η =  
 

  

 
 where the complementary error function erfc, is defined as;  
 

  ( ) ( )erfc exp .22 t dt
∞

η

η = −
π   

 
3. Method of solution 
 

The spectral perturbation method (SPM) is used for solving Eqs (2.14)-(2.16). In the spectral 
perturbation method, we generate series equations using the standard perturbation approach and then solve the 
series equations integrated in the space direction η  numerically using the Chebyshev spectral collocation 
method. With the spectral methods, we can solve higher order perturbation equations easily. Following 
(Seshadri et al. [7]; Nazar et al. [8]), a series expansion is constructed to approximate ( ),f ξ η , ( ),θ ξ η  and 

( ),φ ξ η  solution by regarding ξ  as a small parameter and looking for a perturbation approximation in the form  
 

  ( ) ( ),  , k
k

k 0
f f

+∞

=
ξ η = ξ η , ( ) ( ), , k

k
k 0

+∞

=
θ ξ η = ξ θ η , ( ) ( ), . k

k
k 0

+∞

=
φ ξ η = ξ φ η . (3.1) 

 
Substituting Eq. (3.1) into Eqs (2.14)-(2.16) together with the boundary conditions (2.17) and 

balancing terms of equal power of ξ , we obtain,  
 

  ( ) ( ) ( )''' '' , , ' , ' ,0 0 0 0 0f f 0 f 0 0 f 0 1 f 0
2
η+ = = = ∞ =  (3.2) 

 

  ( ) ( )'' ' , , ,R
0 0 0 0

4N1 Pr 0 0 1 0
3 2

η + θ + θ = θ = θ ∞ = 
 

 (3.3) 

 

  ( ) ( )'' ' , , 0 0 0 0LeSc 0 0 1 0
2
ηφ + φ = φ = φ ∞ = , (3.4) 
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( )

[ ]

( ) ( ) ( )

''' '' ' '' '

' ' '' ,

,    ' ,    ' ,    ,

k k k k 1 k 1 k 1 b k 1

k 1

k 1 i i k 1 i i k 1 i i b k 1 i i
i 0

k k k

f f kf f k 1 f N
2 2

f f f f N

f 0 0 f 0 0 f 0 k 1

− − − −

−

− − − − − − − −
=

η η+ − = − − − λθ − λ φ

+ − − λαθ θ − λ σφ φ

= = ∞ = ≥

+

  (3.5) 

 

  ( ) [ ]

( ) ( )

Pr Pr Pr

Pr He Pr ,

,    ,    ,

R
k k k k 1

k 1

k 1 k 1 k 1 i i
i 0

k k

4N1 k
3 2 2

k 1 f

0 0 0 k 1

−

−

− − − −
=

η η  ′′ ′ ′+ θ + θ − θ = θ 
 

′− − θ − θ − θ

θ = =

+

θ ∞ ≥

  (3.6) 

 

  ( ) [ ]

( ) ( )

LeSc LeSc LeSc

LeSc  LeSc ,

,    ,    .

k k k k 1

k 1

k 1 k 1 i i
i 0

k k

k
2 2

k 1 f

0 0 0 k 1

−

−

− − −
=

η η′′ ′ ′φ + φ − φ = φ

′− − φ

+

− φ

φ = φ ∞ = ≥

  (3.7) 

 
The Chebyshev spectral collocation method is applied to integrate Eqs (3.5)-(3.7). The spectral method 

is based on the Chebyshev polynomials defined on the domain [ ],1 1−  by  
 

  ( ) ( )cos cos .1
lT x l x− =    (3.8) 

 
Before implementing the spectral method, we first transform the physical domain on which the governing 
equation is defined to the region [ ],1 1−  where the spectral method can then be applied. This can be done with 
the aid of the domain truncation procedure, the problem is solved in the interval [ ],0 L  in place of [ ),0 ∞ , 
where L  is the scaling parameter taken to be large. This leads to the transformation  
 

  , 2x 1 1 x 1
L
η= − − ≤ ≤ . (3.9) 

 
The Gauss-Lobatto collocation points [20-22] are used to define the Chebyshev nodes [ ],1 1−  described as  
 

  cos , , , , ..., x
x

jxj 1 x 1 j 0 1 2 N
N

 π= − ≤ ≤ = 
 

 (3.10) 

 
where ( xN 1+ ) is the total number of collocation points. 

The fundamental aim following the spectral collocation method is the introduction of a differential 
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matrix D . The differential matrix D  used to approximate the derivatives of the unknown variables 
( ) ( ) ( ), ,k k kf η θ η φ η  at the collocation points can be defined as 

 

  ( ) ,    , ,..., ,
xN

k
jl k l k x

j l 0

df D f x DF j 0 1 N
d η=η =

= = =
η   

 

  ( ) Θ ,    , ,..., ,
xN

k
jl k l k x

j l 0

d D x D j 0 1 N
d η=η =

θ
= θ = =

η   (3.11) 

 

  ( ) Φ ,    , ,...,
xN

k
jl k l k x

j l 0

d D x D j 0 1 N
d η=η =

φ
= φ = =

η   

 
where ( )xN 1+  is the number of collocation points, /D 2D L= , and  
 

  ( ) ( ) ( ) ( ) ( ) ( ),, , , , , , ,
x x

T T
k k 0 k 1 k N k k 0 k 1 k NF f x f x f x x x x   = … = θ θ … θ   Θ  

   (3.12) 

  ( ) ( ) ( ), ,..., ,
x

T
k k 0 k 1 k Nx x x = φ φ φ Φ  

 
is the vector function at the collocation points. We obtain the higher order derivatives as powers of ,D that is 
 
  ( ) ( ) ( ), , ,p p pp p p

k k kk k kf D F D D= θ = φ =Θ Φ  (3.13) 
 
where p  is the order of the derivatives. The matrix D  is of size ( ) ( )x xN 1 N 1+ × +  and its entries are defined 
in [22] as 
 

  ( )
( )     ;  , , , , ,         ,

j l
j l

jl ll 2
l j l l

c 1D j l j l 0 1 2 N D 1 j l N 1
c 2 1

+ τ−= ≠ = = − ≤ = ≤ −
τ − τ − τ

 

   (3.14) 

    ,
x x

2

00 N N
2N 1D D

6
+= =−  

with  

 
,     , 
,     .

x
l

x

2 l 0 N
c

1 1 l N 1
=

= − − ≤ ≤ −
 (3.15) 

 
Substituting  Eqs (3.11)-(3.14) into Eqs (3.5)-(3.7) gives  
 
  , , ,1 k 1 k 1 k 1A F B− −=  (3.16) 
 
  , , ,2 k 1 k 2 k 1A B− −=Θ  (3.17) 
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  , , ,3 k 1 k 3 k 1A B− −=Φ  (3.18) 
 
subject to the following boundary conditions 
 

  ( ) ( ) ( ), , ,
x x

x x

N N

0l k l N l k l k N
l 0 l 0

D f x 0 D f x 0 f x 0
= =

= = =   (3.19) 

 
  ( ) ( ),    ,

xk N k 0x 0 x 0θ = θ =  (3.20) 
 
  ( ) ( ),    

xk N k 0x 0 x 0φ = φ =  (3.21) 
 
where , , , , , ,, , , , and 1 k 1 2 k 1 3 k 1 1 k 1 2 k 1 3 k 1A A A B B B− − − − − −  are defined as 
 

  , diag ,3 2
1 k 1A D D kD

2−
 = + − 
 

η   

 

  , diag diag Pr  Pr ,2R
2 k 1

4NA 1 D D k I
3 2−

   = + + −  
  

η   

 

  , diag LeSc  LeSc ,2
3 k 1A D D k I

2−
 = + − 
 

η   

   (3.22) 

  ( ) ( ), Sum ,2
1 k 1 k 1 k 1 k 1 b k 1B D F k 1 DF N F

2− − − − −= − − − λ − λ +η Θ Φ   

 

  ( ) ( ), Pr Pr Sum ,2 k 1 k 1 k 1B D k 1
2− − −= − − −η Θ Θ Θ   

 

  ( ) ( ), LeSc LeSc Sum3 k 1 k 1 k 1B D k 1
2− − −= − − −η Φ Φ Φ  

 
where , , ,

x0 1 N = η η η η   ,Sum , Sum  and SumF Θ Φ  are defined as 
 

  ( )( ) ( )Sum ,
k 1

2
k 1 i i k 1 i i k 1 i i b k 1 i i

i 0
F DF DF F D F N

−

− − − − − − − −
=

 = − − λαθ θ − λ σφ φ   

 

  ( ) ( )Sum ,    Sum ,
k 1 k 1

k 1 i i k 1 i i
i 0 i 0

Pr F D LeSc F D
− −

− − − −
= =

   = − = −    Θ Θ Φ Φ  

 
with I  representing an ( ) ( )x xN 1 N 1+ × +  identity matrix and diag() is a diagonal matrix obtained from the 

vector ( ), ,..., ,
x0 1 Nx x x . The boundary conditions Eq.(3.19) are imposed on the first, xN th  row (second from 
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the last row) and ( )xN 1+ st row (last row) rows and first and last columns of Eq. (3.16) to obtain  
 

 

( )
( )

( )
( )

( )

( )

, , , ,

,
,

,
, , , ,

        

x x

x
x x x x x x

x

x

0 0 0 1 0 N 1 0 N k 0
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 (3.22) 

 
while the boundary conditions Eqs (3.20) and (3.21) are imposed on the first and last rows and columns of  
Eqs (3.17) and (3.18) respectively to obtain  
 

 

( )
( )

( )

( )

( )

,
,

,

        

x

x

k 0

2 k 1 1k 1
2 k 1

2 k 1 N 1

k N

1 0 0 0 0x
B xx

B x
0 0 0 1

x 0

−
−

− −

   θ         θ        =                 θ        

A

 




 

 (3.23) 
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 (3.24) 

 
Hence, starting from a known , Θ , Φ0 0 0F , the solutions , Θ , Φk k kF , k 1≥  can be obtained from Eqs (3.22)-
(3.24) as 
 
 , ,

1
k 1 k 1 1 k 1F A B−

− −= , (3.25) 
 
 , , ,1

k 2 k 1 3 k 1A B−
− −=Θ  (3.26) 

 
 , ,

1
k 3 k 1 4 k 1A B−

− −=Φ . (3.27) 
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3. Results and discussion 
 

In this section, the nonlinear partial differential equations (2.14)-(2.16), together with the boundary 
conditions (2.17) were solved using the spectral perturbation method (SPM). The approximate numerical 
solutions of the skin friction coefficients, surface heat transfer, and the surface mass transfer rate at different 
values of the flow parameters were presented. Graphical results for velocity, temperature, and concentration 
profiles for different values of the physical parameter significant to the flow were also presented. The SPM 
series was used to generate results from the initial analytical solution at up to results close to the steady-state 
values. In order to ascertain the accuracy of our method, results generated using the SPM were compared with 
published work of [12], and an excellent agreement was attained between the SPM and the work of [12]. The 
results presented in this study were generated, through numerical experimentation which was found to give 
accurate results. The number of collocation points used in the spectral method discretization was the same, for 
both methods. We note that the values of all physical parameters used in this study were chosen based on the 
values used in the literature related to this work.  

Table 1 displays the approximate numerical solutions of the skin friction coefficient and the reduced 
Nusselt and Sherwood numbers at different values of ξ . The table further shows a comparison of the SPM and 
the published work of [12]. From the table, it can be seen that the SPM results match perfectly well with those 
of [12] up to six decimal digits. In addition, the numerical results from the table show an increase of 

( ) ( )'' , , , ,f 0 0ξ − θ ξ  and ( ),0−φ ξ  with increasing values of ξ . 
In Table 2, an excellent agreement between the SPM and the approximate numerical solutions obtained 

by [12] for ( )'' ,f 0ξ , ( ),0−θ ξ  and ( ),0−φ ξ  is observed for selected physical parameters. It can be seen from 
the table that the SPM and the SRM numerical results match entirely well up to six decimal places. We also 
observe from the table that for increased values of , , bN λ σ  and α , there is an increase in the skin friction 
coefficient, Nusselt number and Sherwood number.  
 
Table 1. Comparison of SPM approximate solutions for ( )'' ,f 0 ξ , ( )' ,0−θ ξ , and ( )' ,0−φ ξ  against those of 
Ref. [12] for different values of ξ  when L 30= , xN 100= , .0 5λ = , .Pr 0 7= , Le 3= , Sc 1= , 1α = , ,1σ =  
He 0= , and RN 0= . 

 
ξ  ( ),f 0′′ ξ  ( ),0′−θ ξ () ( ),0′−φ ξ  

 SPM Ref. [12] SPM Ref. [12] SPM Ref. [12] 

0.1 -0.540183 -0.540183 0.475790 0.475790 0.993124 0.993124 

0.2 -0.516888 -0.516888 0.479891 0.479891 1.010491 1.010491 

0.3 -0.494398 -0.494398 0.484385 0.484385 1.029550 1.029550 

0.4 -0.472821 -0.472821 0.489330 0.489330 1.050616 1.050616 

0.5 -0.452295 -0.452295 0.494804 0.494804 1.074110 1.074110 

0.6 -0.432994 -0.432994 0.500905 0.500905 1.100615 1.100615 

0.7 -0.415145 -0.415145 0.507775 0.507775 1.130989 1.130989 

0.8 -0.399066 -0.399066 0.515629 0.515629 1.166621 1.166621 

0.9 -0.385221 -0.385221 0.524843 0.524843 1.268622 1.268622 
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Table 2. Variation of the SPM approximate solutions of ( )'' ,f 0 ξ , ( )' ,0−θ ξ , and ( )' ,0−φ ξ  against those of 
Ref. [12] for different values of λ , α , RN , σ  when .0 5ξ = , L 30= , xN 100= , .Pr 0 7= , Le 3= , ,Sc 1=  
He 0= , RN 0= . 
 

λ  α  bN  σ ( ),f 0′′ ξ  ( ),0′−θ ξ  ( ),0′−φ ξ  
    SPM Ref. [12] SPM Ref. [12] SPM Ref. [12]

0.1 1 0.5 1 -0.721619 -0.721619 0.488512 0.488512 1.063098 1.063098 
0.5 1 0.5 1 -0.452295 -0.452295 0.494804 0.494804 1.074110 1.074110 
1.0 1 0.5 1 -0.123169 -0.123169 0.502489 0.502489 1.0878165 1.087615 
0.5 0.1 0.5 1 -0.549445 -0.549445 0.492700 0.492700 1.070271 1.070271 
0.5 0.5 0.5 1 -0.506182 -0.506182 0.493637 0.493637 1.071980 1.071980 
0.5 1 0.5 1 -0.452295 -0.452295 0.494804 0.494804 1.074110 1.074110 
0.5 1 0.1 1 -0.516058 -0.516058 0.493757 0.493757 1.071997 1.071997 
0.5 1 0.5 1 -0.452295 -0.452295 0.494804 0.494804 1.074110 1.074110 
0.5 1 1 1 -0.372924 -0.372924 0.496105 0.496105 1.076742 1.076742 
0.5 1 0.5 0.1 -0.481198 -0.481198 0.494428 0.494428 1.073293 1.073293 
0.5 1 0.5 0.5 -0.468347 -0.468347 0.494595 0.494595 1.073656 1.073656 
0.5 1 0.5 1 -0.452295 -0.452295 0.494804 0.494804 1.074110 1.074110 

 

Fig.1. Effect of α  on the skin friction coefficient 
( )'' ,f ξ η  for different , ξ  with , xN 60=

, L 20=   ,  ,  . ,  .R b1 N 1 N 0 5 0 5σ = = = λ = . 

Fig.2. Effect of λ  on the skin friction coefficient 
( )'' ,f 0ξ  for different , ξ  with ,xN 60=  

 ,  L 20=  ,  ,  . ,  R b1 N 1 N 0 5 1σ = = = α = . 
 

Figure 1 depicts the effect of α  on the skin friction ( )'' ,f 0ξ . It can be seen that the skin friction 
decreases with an increase in the values of α . Figure 2 shows the variation of the skin friction ( )'' ,f 0ξ  with 
λ . It can be observed from the figure that for values of .0 1λ =  and .0 3λ = , the skin friction increases while 
for .0 5λ = , the skin friction decreases. This implies that the skin friction is an increasing function of ξ  for 

.0 1λ =  and .0 3λ = , and a decreasing function of ξ  for .0 5λ = . Figures 3 and 4 present the effect of σ  and 

bN , respectively, on the skin friction coefficient. It can be seen that for all the values of σ  and bN , the skin 
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friction is observed to be decreasing. A further increase in the values of He  and RN , decreases the skin friction 
coefficient, the more as seen in Figures 5 and 6.  
 

 
Fig.3. Effect of σ  on the skin friction coefficient 

( )'' ,f 0ξ  for different , ξ  with ,xN 60=  
,L 20=  ,  . ,  ,  .R bN 1 N 0 5 1 0 5= = α = λ = . 

Fig.4. Effect of bN  on the skin friction coefficient 
( )'' ,f ξ η  for different ,ξ  with , xN 60=  

,L 20=  ,  ,   ,  .R1 N 1 1 0 5σ = = α = λ = . 
 

 
Fig.5. Effect of He  on the skin friction coefficient 

( )'' ,f 0ξ  for different ,ξ  with , xN 60=  
,L 20=  ,  ,R1 N 1σ = =  . ,bN 0 5=  ,1α =  

.0 5λ = . 

Fig.6. Effect of RN  on the velocity profile 
( )'' ,f 0ξ  with ,  ,  . ,xN 60 L 20 0 5= = ξ =  

  ,1σ = . ,  ,  .bN 0 5 1 0 5= α = λ = . 

 
 The effect of the heat generation parameter He  on the temperature profile is displayed in Fig.7. As 
would be expected, the temperature profile is enhanced by increasing He . In physical terms, He  enhances 
fluid temperature, leading to an increase in the thermal boundary layer thickness. In Fig. 8, we present the 
solution of temperature profile for various values of RN . Increasing the values of RN  decreases the 
temperature profile which leads to a decrease in the thermal boundary layer thickness. Figure 9 shows the 
impact of Pr  on the temperature profile. We note that an increase in Pr  causes the temperature profile to 
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decrease. As we know, Pr  is the ratio of viscosity to diffusivity, and thus gives an insight into the physics of 
the fluid. Increasing Pr  decelerates the temperature profiles so that the thermal boundary layer thickness 
becomes thinner. The reduction is due to the increase in the viscosity, which in turn enhances the momentum 
boundary layer thickness. The behavior of Pr  on the temperature profile ( ),θ ξ η  correlates with results earlier 
obtained by Awad et al. [12]. Figure 10 depicts the effect of Sc  on the concentration profile ( ( ),φ ξ η ). It can 
be seen from the figure that as Sc  increases, the concentration profile and the boundary layer thickness 
decreases. This implies that an increase in the Schmidt number corresponds to a reduction in the concentration 
profile. Figure 11 shows the effect of various values of Le  on the concentration profile. It can be observed 
that an increase in the Lewis number decreases the concentration profile as well as the concentration boundary 
layer thickness. 

Fig.7. Effect of He  on the temperature profile 
( ), ,θ ξ η  with  ,  ,  ,R xN 1 N 60 L 20= = =

. ,0 5ξ =  He ,  Pr . ,  ,  .1 0 7 1 0 5= = α = λ = . 

Fig.8. Effect of RN  on the temperature profile 
( ),θ ξ η , with He ,1=   ,xN 60=  , L 20=  

. ,0 5ξ =  He ,  Pr . ,  ,  .1 0 7 1 0 5= = α = λ = . 

Fig.9. Effect of Pr  on the temperature profile 
( ),θ ξ η , with , xN 60=  ,L 20=  . ,0 5ξ =  

He ,1=  ,RN 1=  ,1α =  .0 5λ = . 

Fig.10. Effect of Sc  on the concentration profile 
( ),φ ξ η  with , xN 60=  ,L 20=  . ,0 5ξ =  

Le ,1= . ,bN 0 5=  ,1σ =  .0 5λ = . 
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Fig.11. Effect of Le  on the concentration profile ( ),φ ξ η  with,  ,  ,  . , xN 60 L 20 0 5= = ξ =  Sc ,  1=
. ,  ,  .bN 0 5 1 0 5= σ = λ = . 

 
4. Conclusions 
 
 In this study, we have discussed the application of the SPM on systems of nonlinear PDEs. The SPM 
was used to solve the unsteady nonlinear MHD flow in the presence of thermal radiation and heat generation. 
The flow model investigated the effects of the embedded parameters in detail. Approximate numerical 
solutions of the skin friction coefficient, surface heat, and mass transfer rate were generated using the SPM at 
different flow parameter values and dimensionless time values. The SPM results were validated with results 
from the literature, where an excellent agreement between the two sets of results was achieved. The graphical 
results obtained were also found to agree with those found in similar studies in the literature. With the SPM, 
higher-order approximate solutions are obtainable, where not possible, or very difficult to find with the usual 
perturbation schemes. For problems similar to the one investigated in this investigation, the SPM can be used 
efficiently even for complicated expansions, which cannot be solved analytically beyond the first-order 
approximation. In as much as the SPM is limited to problems with small parameters, accurate numerical 
solutions can be obtained as compared to the ordinary perturbation schemes. The numerical results presented 
in the study indicate that the SPM can be used to solve complex nonlinear systems of PDEs, mainly those 
defined using the transformation of [17]. 
 
Nomenclature 
 
 pC  – specific heat at constant pressure of the fluid 
 D  – mass diffusivity 
 g  – acceleration due to gravity 
 H e  – heat generation parameter 
 0K  – fluid thermal conductivity ratio 
 Le  – Lewis number 
 MHD – magnetohydrodynamic 
 bN  – buoyancy parameter 
 RN  – thermal radiation parameter 
 xP e  – Peclet number  
  Pr  – Prandtl number 
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 0Q  – heat generation constant 
 Sc  – Schmidt number 
 ,u v  – velocity Components 
 mα  – thermal diffusivity 
 ,0 1β β  – thermal expansion coefficients 
 ,2 3β β  – solutal expansion coefficients 
 γ – nonlinear temperature parameter 
 ν  – kinematic viscosity 
 ρ  – fluid density 
 σ  – fluid electrical conductivity 
 ψ  – stream function 
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